dc.contributor.author
Bauer, Andreas
dc.contributor.author
Eisert, Jens
dc.contributor.author
Wille, Carolin
dc.date.accessioned
2023-01-09T08:18:48Z
dc.date.available
2023-01-09T08:18:48Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37512
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37226
dc.description.abstract
We introduce a systematic mathematical language for describing fixed point models and apply it to the study to topological phases of matter. The framework established is reminiscent to that of state-sum models and lattice topological quantum field theories, but is formalized and unified in terms of tensor networks. In contrast to existing tensor network ansatzes for the study of ground states of topologically ordered phases, the tensor networks in our formalism directly represent discrete path integrals in Euclidean space-time. This language is more immediately related to the Hamiltonian defining the model than other approaches, via a Trotterization of the respective imaginary time evolution. We illustrate our formalism at hand of simple examples, and demonstrate its full power by expressing known families of models in 2+1 dimensions in their most general form, namely string-net models and Kitaev quantum doubles based on weak Hopf algebras. To elucidate the versatility of our formalism, we also show how fermionic phases of matter can be described and provide a framework for topological fixed point models in 3+1 dimensions.
en
dc.format.extent
97 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
topological fixed point models
en
dc.subject
systematic mathematical language
en
dc.subject
unified diagrammatic approach
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
A unified diagrammatic approach to topological fixed point models
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
038
dcterms.bibliographicCitation.doi
10.21468/SciPostPhysCore.5.3.038
dcterms.bibliographicCitation.journaltitle
SciPost Physics Core
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
5
dcterms.bibliographicCitation.url
https://doi.org/10.21468/SciPostPhysCore.5.3.038
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2666-9366
refubium.resourceType.provider
WoS-Alert