dc.contributor.author
Altmann, Klaus
dc.contributor.author
Constantinescu, Alexandru
dc.contributor.author
Filip, Matej
dc.date.accessioned
2023-01-05T13:05:07Z
dc.date.available
2023-01-05T13:05:07Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37460
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37173
dc.description.abstract
For an arbitrary rational polyhedron, we consider its decompositions into Minkowski summands and, dual to this, the so-called free extensions of the associated pair of semigroups. Being free for a pair of semigroups is equivalent to flatness for the corresponding algebras. The main result is phrased in this dual setup: the category of free extensions always contains an initial object, which we describe explicitly. This provides a canonical free extension of the original pair of semigroups provided by the given polyhedron. Our motivation comes from the deformation theory of the associated toric singularity.
en
dc.format.extent
71 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
lattice structures
en
dc.subject
extensions of semigroups
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Polyhedra, lattice structures, and extensions of semigroups
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1112/jlms.12678
dcterms.bibliographicCitation.journaltitle
Journal of the London Mathematical Society
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
3938
dcterms.bibliographicCitation.pageend
4008
dcterms.bibliographicCitation.volume
106
dcterms.bibliographicCitation.url
https://doi.org/10.1112/jlms.12678
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1469-7750
refubium.resourceType.provider
WoS-Alert