dc.contributor.author
Krennmair, Patrick
dc.contributor.author
Schmid, Timo
dc.date.accessioned
2023-01-05T12:42:23Z
dc.date.available
2023-01-05T12:42:23Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37457
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37170
dc.description.abstract
This paper promotes the use of random forests as versatile tools for estimating spatially disaggregated indicators in the presence of small area-specific sample sizes. Small area estimators are predominantly conceptualised within the regression-setting and rely on linear mixed models to account for the hierarchical structure of the survey data. In contrast, machine learning methods offer non-linear and non-parametric alternatives, combining excellent predictive performance and a reduced risk of model-misspecification. Mixed effects random forests combine advantages of regression forests with the ability to model hierarchical dependencies. This paper provides a coherent framework based on mixed effects random forests for estimating small area averages and proposes a non-parametric bootstrap estimator for assessing the uncertainty of the estimates. We illustrate advantages of our proposed methodology using Mexican income-data from the state Nuevo León. Finally, the methodology is evaluated in model-based and design-based simulations comparing the proposed methodology to traditional regression-based approaches for estimating small area averages.
en
dc.format.extent
30 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
mean squared error
en
dc.subject
official statistics
en
dc.subject
small area estimation
en
dc.subject
tree-based methods
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Flexible domain prediction using mixed effects random forests
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1111/rssc.12600
dcterms.bibliographicCitation.journaltitle
Journal of the Royal Statistical Society: Series C (Applied Statistics)
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.pagestart
1865
dcterms.bibliographicCitation.pageend
1894
dcterms.bibliographicCitation.volume
71
dcterms.bibliographicCitation.url
https://doi.org/10.1111/rssc.12600
refubium.affiliation
Wirtschaftswissenschaft
refubium.affiliation.other
Volkswirtschaftslehre / Institut für Statistik und Ökonometrie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1467-9876
refubium.resourceType.provider
WoS-Alert