dc.contributor.author
Rehberg, Sophie
dc.date.accessioned
2023-01-04T13:31:41Z
dc.date.available
2023-01-04T13:31:41Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37436
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37149
dc.description.abstract
Generalized permutahedra are a class of polytopes with many interesting combinatorial subclasses. We introduce pruned inside-out polytopes, a generalization of inside-out polytopes introduced by Beck-Zaslavsky (2006), which have many applications such as recovering the famous reciprocity result for graph colorings by Stanley. We show (quasi-)polynomiality and reciprocity results for the integer point count of pruned inside-out polytopes by applying classical Ehrhart polynomials and Ehrhart-Macdonald reciprocity. This yields a geometric perspective on and a generalization of a combinatorial reciprocity theorem for generalized permutahedra by Aguiar-Ardila (2017), Billera-Jia-Reiner (2009), and Karaboghossian (2022). Applying this reciprocity theorem to hypergraphic polytopes allows to give a geometric proof of a combinatorial reciprocity theorem for hypergraph colorings by Aval-Karaboghossian-Tanasa (2020). This proof relies, aside from the reciprocity for generalized permutahedra, only on elementary geometric and combinatorial properties of hypergraphs and their associated polytopes.
en
dc.format.extent
31 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Pruned Inside-Out Polytopes
en
dc.subject
Combinatorial Reciprocity Theorems
en
dc.subject
Generalized Permutahedra
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Pruned Inside-Out Polytopes, Combinatorial Reciprocity Theorems and Generalized Permutahedra
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.37236/10371
dcterms.bibliographicCitation.journaltitle
Electronic Journal of Combinatorics
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.volume
29
dcterms.bibliographicCitation.url
https://doi.org/10.37236/10371
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1077-8926
refubium.resourceType.provider
WoS-Alert