dc.contributor.author
Noonan, Theresa
dc.contributor.author
Denzinger, Katrin
dc.contributor.author
Talagayev, Valerij
dc.contributor.author
Chen, Yu
dc.contributor.author
Puls, Kristina
dc.contributor.author
Wolf, Clemens Alexander
dc.contributor.author
Liu, Sijie
dc.contributor.author
Nguyen, Trung Ngoc
dc.contributor.author
Wolber, Gerhard
dc.date.accessioned
2022-12-28T15:18:14Z
dc.date.available
2022-12-28T15:18:14Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37341
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37053
dc.description.abstract
G protein-coupled receptors (GPCRs) are amongst the most pharmaceutically relevant and well-studied protein targets, yet unanswered questions in the field leave significant gaps in our understanding of their nuanced structure and function. Three-dimensional pharmacophore models are powerful computational tools in in silico drug discovery, presenting myriad opportunities for the integration of GPCR structural biology and cheminformatics. This review highlights success stories in the application of 3D pharmacophore modeling to de novo drug design, the discovery of biased and allosteric ligands, scaffold hopping, QSAR analysis, hit-to-lead optimization, GPCR de-orphanization, mechanistic understanding of GPCR pharmacology and the elucidation of ligand–receptor interactions. Furthermore, advances in the incorporation of dynamics and machine learning are highlighted. The review will analyze challenges in the field of GPCR drug discovery, detailing how 3D pharmacophore modeling can be used to address them. Finally, we will present opportunities afforded by 3D pharmacophore modeling in the advancement of our understanding and targeting of GPCRs.
en
dc.format.extent
31 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
ligand-based pharmacophores
en
dc.subject
structure-based pharmacophores
en
dc.subject
virtual screening
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::615 Pharmakologie, Therapeutik
dc.title
Mind the Gap - Deciphering GPCR Pharmacology Using 3D Pharmacophores and Artificial Intelligence
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
1304
dcterms.bibliographicCitation.doi
10.3390/ph15111304
dcterms.bibliographicCitation.journaltitle
Pharmaceuticals
dcterms.bibliographicCitation.number
11
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
https://doi.org/10.3390/ph15111304
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Pharmazie
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
de
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1424-8247