dc.contributor.author
Jordan, Jakob Ernst Luis
dc.contributor.author
Bertalan, Gergely
dc.contributor.author
Meyer, Tom
dc.contributor.author
Tzschätzsch, Heiko
dc.contributor.author
Gauert, Anton
dc.contributor.author
Bramè, Luca
dc.contributor.author
Herthum, Helge
dc.contributor.author
Safraou, Yasmine
dc.contributor.author
Schröder, Leif
dc.contributor.author
Braun, Jürgen
dc.contributor.author
Hagemann, Anja I. H.
dc.contributor.author
Sack, Ingolf
dc.date.accessioned
2022-11-29T12:47:25Z
dc.date.available
2022-11-29T12:47:25Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37086
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-36800
dc.description.abstract
Purpose: The zebrafish (Danio rerio) has become an important animal model in a wide range of biomedical research disciplines. Growing awareness of the role of biomechanical properties in tumor progression and neuronal development has led to an increasing interest in the noninvasive mapping of the viscoelastic properties of zebrafish by elastography methods applicable to bulky and nontranslucent tissues.
Methods: Microscopic multifrequency MR elastography is introduced for mapping shear wave speed (SWS) and loss angle (φ) as markers of stiffness and viscosity of muscle, brain, and neuroblastoma tumors in postmortem zebrafish with 60 µm in-plane resolution. Experiments were performed in a 7 Tesla MR scanner at 1, 1.2, and 1.4 kHz driving frequencies.
Results: Detailed zebrafish viscoelasticity maps revealed that the midbrain region (SWS = 3.1 ± 0.7 m/s, φ = 1.2 ± 0.3 radian [rad]) was stiffer and less viscous than telencephalon (SWS = 2.6 ± 0. 5 m/s, φ = 1.4 ± 0.2 rad) and optic tectum (SWS = 2.6 ± 0.5 m/s, φ = 1.3 ± 0.4 rad), whereas the cerebellum (SWS = 2.9 ± 0.6 m/s, φ = 0.9 ± 0.4 rad) was stiffer but less viscous than both (all p < .05). Overall, brain tissue (SWS = 2.9 ± 0.4 m/s, φ = 1.2 ± 0.2 rad) had similar stiffness but lower viscosity values than muscle tissue (SWS = 2.9 ± 0.5 m/s, φ = 1.4 ± 0.2 rad), whereas neuroblastoma (SWS = 2.4 ± 0.3 m/s, φ = 0.7 ± 0.1 rad, all p < .05) was the softest and least viscous tissue.
Conclusion: Microscopic multifrequency MR elastography-generated maps of zebrafish show many details of viscoelasticity and resolve tissue regions, of great interest in neuromechanical and oncological research and for which our study provides first reference values.
en
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
MR elastography
en
dc.subject
neuroblastoma
en
dc.subject
viscoelasticity
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Microscopic multifrequency MR elastography for mapping viscoelasticity in zebrafish
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1002/mrm.29066
dcterms.bibliographicCitation.journaltitle
Magnetic Resonance in Medicine
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.originalpublishername
Wiley
dcterms.bibliographicCitation.pagestart
1435
dcterms.bibliographicCitation.pageend
1445
dcterms.bibliographicCitation.volume
87
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
DEAL Wiley
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
34752638
dcterms.isPartOf.issn
0740-3194
dcterms.isPartOf.eissn
1522-2594