dc.contributor.author
Merz, Niklas
dc.contributor.author
Hubig, Alexander
dc.contributor.author
Kleinen, Thomas
dc.contributor.author
Therre, Steffen
dc.contributor.author
Kaufmann, Georg
dc.contributor.author
Frank, Norbert
dc.date.accessioned
2023-03-10T14:12:53Z
dc.date.available
2023-03-10T14:12:53Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/36946
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-36659
dc.description.abstract
Understanding how stalagmites grow under changing climate conditions is of great significance for their application as a paleoclimate archive. In this study, we present a shape modeling approach to stalagmite growth by combining three existing models accounting for climate variables, karst water chemistry, and speleothem deposition. The combined model requires only four input parameters: calcium concentration of the water drop, drip interval, cave temperature, and cave carbon dioxide (CO2) concentration. Using the output of the coupled atmosphere–ocean–land surface model MPI-ESM1.2 and the CaveCalc model for speleothem chemistry, we simulated stalagmite growth at Sofular Cave, Northern Turkey, (in the last 25 kyr) and compared the results to those of the existing So-1 stalagmite from the same cave. This approach allows simulating, completely independent of measured boundary conditions, a stalagmite geometry that follows the trend of the experimental data for the growth rate, with input parameters within the respective error ranges. When testing the sensitivity of the individual model parameters, the model suggests that the stalagmite radius mainly depends on the drip interval, whereas the growth rate is driven by the calcium concentration of the water drop. The model is also capable of showing some basic phenomena, like a decrease in growth rate (as observed in the real stalagmite), as CO2 concentration in the cave increases. The coupling of input parameters for the model to climate models represents the first attempt to understand an important climate archive in its shape and isotope content and opens the possibility for a new inverse approach to paleoclimate variables and model constraints.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
paleoclimate
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
How the climate shapes stalagmites—A comparative study of model and speleothem at the Sofular Cave, Northern Turkey
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
969211
dcterms.bibliographicCitation.doi
10.3389/feart.2022.969211
dcterms.bibliographicCitation.journaltitle
Frontiers in Earth Science
dcterms.bibliographicCitation.originalpublishername
Frontiers Media S.A.
dcterms.bibliographicCitation.volume
10 (2022)
dcterms.bibliographicCitation.url
https://doi.org/10.3389/feart.2022.969211
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geophysik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2296-6463
refubium.resourceType.provider
DeepGreen