dc.contributor.author
Engel, Maximilian
dc.contributor.author
Kuehn, Christian
dc.contributor.author
de Rijk, Björn
dc.date.accessioned
2022-11-21T08:54:28Z
dc.date.available
2022-11-21T08:54:28Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/36941
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-36654
dc.description.abstract
Using various techniques from dynamical systems theory, we rigorously study an experimentally validated model by [Barkley et al 2015 Nature 526 550–3], which describes the rise of turbulent pipe flow via a PDE system of reduced complexity. The fast evolution of turbulence is governed by reaction-diffusion dynamics coupled to the centerline velocity, which evolves with advection of Burgers’ type and a slow relaminarization term. Applying to this model a spatial dynamics ansatz and geometric singular perturbation theory, we prove the existence of a heteroclinic loop between a turbulent and a laminar steady state and establish a cascade of bifurcations of various traveling waves mediating the transition to turbulence. The most complicated behaviour can be found in an intermediate Reynolds number regime, where the traveling waves exhibit arbitrarily long periodic-like dynamics indicating the onset of chaos. Our analysis provides a systematic mathematical approach to identifying the transition to spatio–temporal turbulent structures that may also be applicable to other models arising in fluid dynamics.
en
dc.format.extent
35 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
bifurcations
en
dc.subject
heteroclinic loop
en
dc.subject
reaction–diffusion–advection system
en
dc.subject
traveling waves
en
dc.subject
geometric singular perturbation theory
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
A traveling wave bifurcation analysis of turbulent pipe flow
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1088/1361-6544/ac9504
dcterms.bibliographicCitation.journaltitle
Nonlinearity
dcterms.bibliographicCitation.number
11
dcterms.bibliographicCitation.originalpublishername
IOP Publishing
dcterms.bibliographicCitation.pagestart
5903
dcterms.bibliographicCitation.pageend
5937
dcterms.bibliographicCitation.volume
35
dcterms.bibliographicCitation.url
https://doi.org/10.1088/1361-6544/ac9504
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0951-7715
dcterms.isPartOf.eissn
1361-6544
refubium.resourceType.provider
DeepGreen