dc.contributor.author
Mardt, Andreas
dc.contributor.author
Hempel, Tim
dc.contributor.author
Clementi, Cecilia
dc.contributor.author
Noé, Frank
dc.date.accessioned
2022-11-21T07:57:32Z
dc.date.available
2022-11-21T07:57:32Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/36933
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-36646
dc.description.abstract
The increasing interest in modeling the dynamics of ever larger proteins has revealed a fundamental problem with models that describe the molecular system as being in a global configuration state. This notion limits our ability to gather sufficient statistics of state probabilities or state-to-state transitions because for large molecular systems the number of metastable states grows exponentially with size. In this manuscript, we approach this challenge by introducing a method that combines our recent progress on independent Markov decomposition (IMD) with VAMPnets, a deep learning approach to Markov modeling. We establish a training objective that quantifies how well a given decomposition of the molecular system into independent subdomains with Markovian dynamics approximates the overall dynamics. By constructing an end-to-end learning framework, the decomposition into such subdomains and their individual Markov state models are simultaneously learned, providing a data-efficient and easily interpretable summary of the complex system dynamics. While learning the dynamical coupling between Markovian subdomains is still an open issue, the present results are a significant step towards learning Ising models of large molecular complexes from simulation data.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Computational biophysics
en
dc.subject
Machine learning
en
dc.subject
Statistical methods
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Deep learning to decompose macromolecules into independent Markovian domains
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
7101
dcterms.bibliographicCitation.doi
10.1038/s41467-022-34603-z
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.volume
13
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-022-34603-z
refubium.affiliation
Mathematik und Informatik
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Mathematik

refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723