dc.contributor.author
Mutai, Noah Cheruiyot
dc.date.accessioned
2022-11-30T13:05:31Z
dc.date.available
2022-11-30T13:05:31Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/36932
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-36645
dc.description.abstract
Health insurance is important in disease management, access to quality health care and attaining Universal Health Care. National and regional data on health insurance coverage needed for policy making is mostly obtained from household surveys; however, estimates at lower administrative units like at the county level in Kenya are highly variable due to small sample sizes. Small area estimation combines survey and census data using a model to increases the effective sample size and therefore provides more precise estimates. In this study we estimate the health insurance coverage for Kenyan counties using a binary M‑quantile small area model for women (n=14,730) and men (n=12,007) aged 15 to 49 years old. This has the advantage that we avoid specifying the distribution of the random effects and distributional robustness is automatically achieved. The response variable is derived from the Kenya Demographic and Health Survey 2014 and auxiliary data from the Kenya Population and Housing Census 2009. We estimate the mean squared error using an analytical approach based on Taylor series linearization. The national direct health insurance coverage estimates are 18% and 21% for women and men respectively. With the current health insurance schemes, coverage remains low across the 47 counties. These county-level estimates are helpful in formulating decentralized policies and funding models.
en
dc.format.extent
24 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Binary M‑quantile
en
dc.subject
Direct estimation
en
dc.subject
Health insurance coverage
en
dc.subject
Universal Health Care
en
dc.subject
Taylor series linearization
en
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft::330 Wirtschaft
dc.title
Small area estimation of health insurance coverage for Kenyan counties
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s11943-022-00312-8
dcterms.bibliographicCitation.journaltitle
AStA Wirtschafts- und Sozialstatistisches Archiv
dcterms.bibliographicCitation.number
3-4
dcterms.bibliographicCitation.pagestart
231
dcterms.bibliographicCitation.pageend
254
dcterms.bibliographicCitation.volume
16
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s11943-022-00312-8
refubium.affiliation
Wirtschaftswissenschaft
refubium.affiliation.other
Volkswirtschaftslehre / Institut für Statistik und Ökonometrie
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1863-8163