dc.contributor.author
Weintrub, Benjamin I.
dc.contributor.author
Hsieh, Yu-Ling
dc.contributor.author
Kovalchuk, Sviatoslav
dc.contributor.author
Kirchhof, Jan N.
dc.contributor.author
Greben, Kyrylo
dc.contributor.author
Bolotin, Kirill
dc.date.accessioned
2022-11-21T07:33:34Z
dc.date.available
2022-11-21T07:33:34Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/36930
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-36643
dc.description.abstract
The application of an electric field through two-dimensional materials (2DMs) modifies their properties. For example, a bandgap opens in semimetallic bilayer graphene while the bandgap shrinks in few-layer 2D semiconductors. The maximum electric field strength achievable in conventional devices is limited to ≤0.3 V/nm by the dielectric breakdown of gate dielectrics. Here, we overcome this limit by suspending a 2DM between two volumes of ionic liquid (IL) with independently controlled potentials. The potential difference between the ILs falls across an ultrathin layer consisting of the 2DM and the electrical double layers above and below it, producing an intense electric field larger than 4 V/nm. This field is strong enough to close the bandgap of few-layer WSe2, thereby driving a semiconductor-to-metal transition. The ability to apply fields an order of magnitude higher than what is possible in dielectric-gated devices grants access to previously-inaccessible phenomena occurring in intense electric fields.
en
dc.format.extent
6 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Electronic devices
en
dc.subject
Electronic properties and materials
en
dc.subject
Two-dimensional materials
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Generating intense electric fields in 2D materials by dual ionic gating
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
6601
dcterms.bibliographicCitation.doi
10.1038/s41467-022-34158-z
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.volume
13
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-022-34158-z
refubium.affiliation
Physik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723