dc.contributor.author
Haferkamp, Jonas
dc.contributor.author
Montealegre-Mora, F.
dc.contributor.author
Heinrich, M.
dc.contributor.author
Eisert, Jens
dc.contributor.author
Gross, D.
dc.contributor.author
Roth, Ingo
dc.date.accessioned
2023-02-02T08:55:42Z
dc.date.available
2023-02-02T08:55:42Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/36893
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-36606
dc.description.abstract
Many quantum information protocols require the implementation of random unitaries. Because it takes exponential resources to produce Haar-random unitaries drawn from the full n-qubit group, one often resorts to t-designs. Unitary t-designs mimic the Haar-measure up to t-th moments. It is known that Clifford operations can implement at most 3-designs. In this work, we quantify the non-Clifford resources required to break this barrier. We find that it suffices to inject O(t4log2(t)log(1/ε)) many non-Clifford gates into a polynomial-depth random Clifford circuit to obtain an ε-approximate t-design. Strikingly, the number of non-Clifford gates required is independent of the system size – asymptotically, the density of non-Clifford gates is allowed to tend to zero. We also derive novel bounds on the convergence time of random Clifford circuits to the t-th moment of the uniform distribution on the Clifford group. Our proofs exploit a recently developed variant of Schur-Weyl duality for the Clifford group, as well as bounds on restricted spectral gaps of averaging operators.
en
dc.format.extent
47 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Efficient Unitary Designs
en
dc.subject
System-Size Independent Number
en
dc.subject
Non-Clifford Gates
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Efficient Unitary Designs with a System-Size Independent Number of Non-Clifford Gates
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
92951
dcterms.bibliographicCitation.doi
10.1007/s00220-022-04507-6
dcterms.bibliographicCitation.journaltitle
Communications in Mathematical Physics
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
995
dcterms.bibliographicCitation.pageend
1041
dcterms.bibliographicCitation.volume
397
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00220-022-04507-6
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme

refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-0916