dc.contributor.author
Würz, Nora
dc.contributor.author
Schmid, Timo
dc.contributor.author
Tzavidis, Nikos
dc.date.accessioned
2023-01-02T10:47:04Z
dc.date.available
2023-01-02T10:47:04Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/36820
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-36533
dc.description.abstract
Spatially disaggregated income indicators are typically estimated by using model-based methods that assume access to auxiliary information from population micro-data. In many countries like Germany and the UK population micro-data are not publicly available. In this work we propose small area methodology when only aggregate population-level auxiliary information is available. We use data-driven transformations of the response to satisfy the parametric assumptions of the used models. In the absence of population micro-data, appropriate bias-corrections for small area prediction are needed. Under the approach we propose in this paper, aggregate statistics (means and covariances) and kernel density estimation are used to resolve the issue of not having access to population micro-data. We further explore the estimation of the mean squared error using the parametric bootstrap. Extensive model-based and design-based simulations are used to compare the proposed method to alternative methods. Finally, the proposed methodology is applied to the 2011 Socio-Economic Panel and aggregate census information from the same year to estimate the average income for 96 regional planning regions in Germany.
en
dc.format.extent
28 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
density estimation
en
dc.subject
official statistics
en
dc.subject
small area estimation
en
dc.subject
unit-level models
en
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft::330 Wirtschaft
dc.title
Estimating regional income indicators under transformations and access to limited population auxiliary information
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1111/rssa.12913
dcterms.bibliographicCitation.journaltitle
Journal of the Royal Statistical Society: Series A (Statistics in Society)
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
1679
dcterms.bibliographicCitation.pageend
1706
dcterms.bibliographicCitation.volume
185
dcterms.bibliographicCitation.url
https://doi.org/10.1111/rssa.12913
refubium.affiliation
Wirtschaftswissenschaft
refubium.affiliation.other
Volkswirtschaftslehre / Institut für Statistik und Ökonometrie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1467-985X
refubium.resourceType.provider
WoS-Alert