dc.contributor.author
Pardo Pérez, Laura C.
dc.contributor.author
Chalkley, Zora
dc.contributor.author
Wendt, Robert
dc.contributor.author
Ahmet, Ibbi Y.
dc.contributor.author
Wollgarten, Markus
dc.contributor.author
Mayer, Matthew T.
dc.date.accessioned
2022-11-11T08:12:56Z
dc.date.available
2022-11-11T08:12:56Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/36812
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-36525
dc.description.abstract
In the field of CO2 electroreduction (CO2ER), tuning the selectivity among diverse products remains a major challenge. Mixed metal catalysts offer possible synergetic effects which can be exploited for tuning product selectivity. We present a simple wet chemical approach to synthesize a range of nickel-indium mixed oxide (NiAInBOx) thin films with homogeneous metal distribution. CO2 electroreduction results indicate that the NiAInBOx mixed oxide thin films can achieve high CO selectivity (>70%) in contrast with the single metal oxides NiO (H2 >90%) and In2O3 (formate >80%). The relative composition Ni40In60Ox attained the best CO selectivity of 71% at moderate cathodic bias of −0.8 VRHE, while a higher cathodic bias (E < −0.9 V) promoted a decrease of CO in favor of formate. A detailed investigation of the Ni40In60Ox thin films following progressive stages of reduction during CO2ER revealed dynamic structural transformations strongly dependent on applied bias and electrolysis time. For the CO-selective catalyst composition, at moderate cathodic bias (E < −0.8 V) and short electrolysis times (1 h), the catalyst is composed of nickel-indium alloy grains embedded in amorphous Ni–In mixed oxide as observed by electron microscopy. Extending electrolysis time at −0.8 V for 10 h, or increasing the applied reductive bias to −1.0 V, result in a complete reduction of the residual oxide film into an interconnected array of multicomponent (In, Ni, Ni3In7) nanoparticles which display significantly lower CO selectivity (<50%). Our results indicate that the persistent amorphous NiInOx oxide/alloy composite material preserved in the early stages of reduction at −0.8 V plays a key role in CO selectivity. The highly dynamic structure observed in this catalytic system demonstrates the importance of conducting detailed structural characterization at various applied potentials to understand the impact of structural changes on the observed CO2ER selectivity trends; and thus be able to distinguish structural effects from mechanistic effects triggered by increasing the reductive bias.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
CO2 electroreduction
en
dc.subject
nickel-indium mixed oxides
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
CO2 electroreduction activity and dynamic structural evolution of in situ reduced nickel-indium mixed oxides
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1039/D2TA05214H
dcterms.bibliographicCitation.journaltitle
Journal of Materials Chemistry A
dcterms.bibliographicCitation.number
38
dcterms.bibliographicCitation.pagestart
20593
dcterms.bibliographicCitation.pageend
20605
dcterms.bibliographicCitation.volume
10
dcterms.bibliographicCitation.url
https://doi.org/10.1039/D2TA05214H
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2050-7496
refubium.resourceType.provider
WoS-Alert