dc.contributor.author
Kim, Damon
dc.contributor.author
Elgeti, Thomas
dc.contributor.author
Penzkofer, Tobias
dc.contributor.author
Steffen, Ingo G.
dc.contributor.author
Jensen, Laura J.
dc.contributor.author
Schwartz, Stefan
dc.contributor.author
Hamm, Bernd
dc.contributor.author
Nagel, Sebastian N.
dc.date.accessioned
2022-10-19T09:08:56Z
dc.date.available
2022-10-19T09:08:56Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/36581
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-36294
dc.description.abstract
Objectives: To evaluate texture analysis in nonenhanced 3-T MRI for differentiating pulmonary fungal infiltrates and lymphoma manifestations in hematological patients and to compare the diagnostic performance with that of signal intensity quotients ("nonenhanced imaging characterization quotients," NICQs).
Methods: MR scans were performed using a speed-optimized imaging protocol without an intravenous contrast medium including axial T2-weighted (T2w) single-shot fast spin-echo and T1-weighted (T1w) gradient-echo sequences. ROIs were drawn within the lesions to extract first-order statistics from original images using HeterogeneityCAD and PyRadiomics. NICQs were calculated using signal intensities of the lesions, muscle, and fat. The standard of reference was histology or clinical diagnosis in follow-up. Statistical testing included ROC analysis, clustered ROC analysis, and DeLong test. Intra- and interrater reliability was tested using intraclass correlation coefficients (ICC).
Results: Thirty-three fungal infiltrates in 16 patients and 38 pulmonary lymphoma manifestations in 19 patients were included. Considering the leading lesion in each patient, diagnostic performance was excellent for T1w entropy (AUC 80.2%; p < 0.005) and slightly inferior for T2w energy (79.9%; p < 0.005), T1w uniformity (79.6%; p < 0.005), and T1w energy (77.0%; p < 0.01); the best AUC for NICQs was 72.0% for T2NICQmean (p < 0.05). Intra- and interrater reliability was good to excellent (ICC > 0.81) for these parameters except for moderate intrarater reliability of T1w energy (ICC = 0.64).
Conclusions: T1w entropy, uniformity, and energy and T2w energy showed the best performances for differentiating pulmonary lymphoma and fungal pneumonia and outperformed NICQs. Results of the texture analysis should be checked for their intrinsic consistency to identify possible incongruities of single parameters.
Key points: • Texture analysis in nonenhanced pulmonary MRI improves the differentiation of pulmonary lymphoma and fungal pneumonia compared with signal intensity quotients. • T1w entropy, uniformity, and energy along with T2w energy show the best performances for differentiating pulmonary lymphoma from fungal pneumonia. • The results of the texture analysis should be checked for their intrinsic consistency to identify possible incongruities of single parameters.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Differential diagnosis
en
dc.subject
Magnetic resonance imaging
en
dc.subject
Pulmonary fungal infections
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Enhancing the differentiation of pulmonary lymphoma and fungal pneumonia in hematological patients using texture analysis in 3-T MRI
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00330-020-07137-5
dcterms.bibliographicCitation.journaltitle
European Radiology
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.originalpublishername
Springer Nature
dcterms.bibliographicCitation.pagestart
695
dcterms.bibliographicCitation.pageend
705
dcterms.bibliographicCitation.volume
31
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
Springer Nature DEAL
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
32822054
dcterms.isPartOf.issn
0938-7994
dcterms.isPartOf.eissn
1432-1084