dc.contributor.author
Kulik, H. J.
dc.contributor.author
Hammerschmidt, T.
dc.contributor.author
Schmidt, J.
dc.contributor.author
Botti, Silvana
dc.contributor.author
Marques, M. A. L.
dc.contributor.author
Boley, M.
dc.contributor.author
Scheffler, M.
dc.contributor.author
Todorović, M.
dc.contributor.author
Rinke, P.
dc.contributor.author
Oses, C.
dc.contributor.author
Smolyanyuk, A.
dc.contributor.author
Curtarolo, S.
dc.contributor.author
Tkatchenko, A.
dc.contributor.author
Bartók, A. P.
dc.contributor.author
Manzhos, S.
dc.contributor.author
Ihara, M.
dc.contributor.author
Carrington, T.
dc.contributor.author
Behler, J.
dc.contributor.author
Isayev, O.
dc.contributor.author
Veit, M.
dc.contributor.author
Grisafi, A.
dc.contributor.author
Nigam, J.
dc.contributor.author
Ceriotti, M.
dc.contributor.author
Schütt, K. T.
dc.contributor.author
Westermayr, J.
dc.contributor.author
Gastegger, M.
dc.contributor.author
Maurer, R. J.
dc.contributor.author
Kalita, B.
dc.contributor.author
Burke, K.
dc.contributor.author
Nagai, R.
dc.contributor.author
Akashi, R.
dc.contributor.author
Sugino, O.
dc.contributor.author
Hermann, J.
dc.contributor.author
Noé, F.
dc.contributor.author
Pilati, S.
dc.contributor.author
Draxl, C.
dc.contributor.author
Kuban, M.
dc.contributor.author
Rigamonti, S.
dc.contributor.author
Scheidgen, M.
dc.contributor.author
Esters, M.
dc.contributor.author
Hicks, D.
dc.contributor.author
Toher, C.
dc.contributor.author
Balachandran, P. V.
dc.contributor.author
Tamblyn, I.
dc.contributor.author
Whitelam, S.
dc.contributor.author
Bellinger, C.
dc.contributor.author
Ghiringhelli, L. M.
dc.date.accessioned
2022-09-15T12:32:59Z
dc.date.available
2022-09-15T12:32:59Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/36265
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-35981
dc.description.abstract
AbstractIn recent years, we have been witnessing a paradigm shift in computational materials science. In fact, traditional methods, mostly developed in the second half of the XXth century, are being complemented, extended, and sometimes even completely replaced by faster, simpler, and often more accurate approaches. The new approaches, that we collectively label by machine learning, have their origins in the fields of informatics and artificial intelligence, but are making rapid inroads in all other branches of science. With this in mind, this Roadmap article, consisting of multiple contributions from experts across the field, discusses the use of machine learning in materials science, and share perspectives on current and future challenges in problems as diverse as the prediction of materials properties, the construction of force-fields, the development of exchange correlation functionals for density-functional theory, the solution of the many-body problem, and more. In spite of the already numerous and exciting success stories, we are just at the beginning of a long path that will reshape materials science for the many challenges of the XXIth century.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
machine learning
en
dc.subject
electronic structure
en
dc.subject
computational materials science
en
dc.subject
density-functional theory
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Roadmap on Machine learning in electronic structure
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
023004
dcterms.bibliographicCitation.doi
10.1088/2516-1075/ac572f
dcterms.bibliographicCitation.journaltitle
Electronic Structure
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.originalpublishername
IOP Publishing
dcterms.bibliographicCitation.volume
4 (2022)
dcterms.bibliographicCitation.url
https://doi.org/10.1088/2516-1075/ac572f
refubium.affiliation
Mathematik und Informatik
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2516-1075
refubium.resourceType.provider
DeepGreen