dc.contributor.author
Güldemeister, Nicole
dc.contributor.author
Moreau, Juulia-Gabrielle
dc.contributor.author
Kohout, Tomas
dc.contributor.author
Luther, Robert
dc.contributor.author
Wünnemann, Kai
dc.date.accessioned
2022-09-15T12:38:38Z
dc.date.available
2022-09-15T12:38:38Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/36263
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-35979
dc.description.abstract
AbstractShock metamorphism in ordinary chondrites allows for reconstructing impact events between asteroids in the main asteroid belt. Shock-darkening of ordinary chondrites occurs at the onset of complete shock melting of the rock (>70 GPa) or injection of sulfide and metal melt into the cracks within solid silicates (∼50 GPa). Darkening of ordinary chondrites masks diagnostic silicate features observed in the reflectance spectrum of S-complex asteroids so they appear similar to C/X-complex asteroids. In this work, we investigate the shock pressure and associated metamorphism pattern in rubble-pile asteroids at impact velocities of 4–10 km s−1. We use the iSALE shock physics code and implement two-dimensional models with simplified properties in order to quantify the influence of the following parameters on shock-darkening efficiency: impact velocity, porosity within the asteroid, impactor size, and ejection efficiency. We observe that, in rubble-pile asteroids, the velocity and size of the impactor are the constraining parameters in recording high-grade shock metamorphism. Yet, the recorded fraction of higher shock stages remains low (<0.2). Varying the porosity of the boulders from 10% to 30% does not significantly affect the distribution of pressure and fraction of shock-darkened material. The pressure distribution in rubble-pile asteroids is very similar to that of monolithic asteroids with the same porosity. Thus, producing significant volumes of high-degree shocked ordinary chondrites requires strong collision events (impact velocities above 8 km s−1 and/or large sizes of impactors). A large amount of asteroid material escapes during an impact event (up to 90%); however, only a small portion of the escaping material is shock-darkened (6%).
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Main belt asteroids
en
dc.subject
Computational methods
en
dc.subject
Asteroid dynamics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Insight into the Distribution of High-pressure Shock Metamorphism in Rubble-pile Asteroids
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
198
dcterms.bibliographicCitation.doi
10.3847/PSJ/ac83c0
dcterms.bibliographicCitation.journaltitle
The Planetary Science Journal
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.originalpublishername
The American Astronomical Society
dcterms.bibliographicCitation.volume
3 (2022)
dcterms.bibliographicCitation.url
https://doi.org/10.3847/PSJ/ac83c0
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2632-3338
refubium.resourceType.provider
DeepGreen