dc.contributor.author
Liebenau, Anita
dc.contributor.author
Mattos, Letícia
dc.contributor.author
Mendonça, Walner
dc.contributor.author
Skokan, Jozef
dc.date.accessioned
2023-06-01T07:11:08Z
dc.date.available
2023-06-01T07:11:08Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/36142
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-35858
dc.description.abstract
We say that G -> (F, H) if, in every edge coloring c : E(G) -> {1, 2}, we can find either a 1-colored copy of F or a 2-colored copy of H. The well-known states that the threshold for the property G(n, p) -> (F, H) is equal to n(-1/)m(2)((F,H)), where m(2)(F, H) is given by
m(2) (F, H) := max {e(J)/v(J) - 2 + 1/m(2)(H) : J subset of F, e(J) >= 1}.
for any pair of graphs F and H with m(2) (F) >= m(2)(H). In this article, we showthe 0-statement of theKohayakawaKreuter conjecture for every pair of cycles and cliques.
en
dc.format.extent
21 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
Kohayakawa-Kreuter conjecture
en
dc.subject
Ramsey theory
en
dc.subject
random graphs
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Asymmetric Ramsey properties of random graphs involving cliques and cycles
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1002/rsa.21106
dcterms.bibliographicCitation.journaltitle
Random Structures and Algorithms
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
1035
dcterms.bibliographicCitation.pageend
1055
dcterms.bibliographicCitation.volume
62
dcterms.bibliographicCitation.url
https://doi.org/10.1002/rsa.21106
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1098-2418
refubium.resourceType.provider
WoS-Alert