dc.contributor.author
Kruschinski, Anna
dc.date.accessioned
2018-06-07T17:13:44Z
dc.date.available
2011-06-28T07:13:28.860Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/3577
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-7777
dc.description
Table of contents Acknowledgements
....................................................................................................................4
Table of contents
.......................................................................................................................5
1\. General introduction
...............................................................................................................9
1.1. Natural Killer
cells...............................................................................................................
9 1.1.1. Discovery of Natural Killer cells
.........................................................................................
9 1.1.2. NK cell development and definition
....................................................................................
9 1.2. NK cell activation
..............................................................................................................
10 1.2.1. NK cell inhibitory receptors
.............................................................................................
11 1.2.2. Activating receptors
.......................................................................................................
12 1.2.3. NK cell licensing/education
..............................................................................................
12 1.3. NK cells in tumor therapy
..................................................................................................
13 1.4. HER-2
..............................................................................................................................
15 1.4.1. HER-2 mediated cell signaling
..........................................................................................
15 1.4.2. Immunotherapy for HER-2 overexpressing tumors
............................................................ 16 1.5. Chimeric
receptors
............................................................................................................
17 1.5.1. Composition of a CR
.......................................................................................................
17 1.5.2. Advantages of a CR
........................................................................................................
17 1.5.3. CRs in immunotherapy
....................................................................................................
18 1.6. Aim and outline of this study
..............................................................................................
20 2\. Materials and Methods
..........................................................................................................
22 2.1. Materials
..........................................................................................................................
22 2.1.1. Consumables and chemicals
............................................................................................
22 2.1.2. Antibodies
......................................................................................................................
22 2.1.3. Machines
........................................................................................................................
23 2.1.4. Software
........................................................................................................................
24 2.1.5. Statistics
........................................................................................................................
24 2.2. Cell culture
........................................................................................................................
24 2.2.1. Cell lines
.........................................................................................................................
24 2.2.2. Isolation of human PBMCs
................................................................................................
25 2.3. Retroviral vectors
..............................................................................................................
25 2.4. Retrovirus production by 293T cells
.....................................................................................
26 2.5. Expansion of primary human NK cells
..................................................................................
26 2.6. Retroviral transduction
.......................................................................................................
27 2.6.1. RetroNectin assessed transduction protocol
....................................................................... 27
2.6.2. Spinocculation transduction
.............................................................................................
27 2.7. Antibody staining and FACS analysis
...................................................................................
27 2.8. T cell depletion
.................................................................................................................
28 2.9. Cytokine release assay (ELISA)
.........................................................................................
28 2.10. Pre-incubation with plate-bound recombinant MICA
............................................................ 28 2.11.
Intracellular cytokine staining for IFN-γ
............................................................................
29 2.12. IL-2 secretion assay
.......................................................................................................
29 2.13. CFSE labeling of NK cells
.................................................................................................
29 2.14. CD107a degranulation assay
............................................................................................
29 2.15. 51Cr release assay
.........................................................................................................
30 2.16. Tumor cell challenge and in vivo imaging
.......................................................................... 30
3\. Results
...............................................................................................................................
32 3.1. Expansion and transduction of primary human NK cells
........................................................ 32 3.1.1. Effect of
PBL to feeder cell ratio on transduction efficacy
................................................... 32 3.1.2. Role of IL-2 in
transduction efficacy
.................................................................................
34 3.1.3. Effect of timing and number of transductions on maximizing
transduction efficacy ................ 35 3.1.4. Impact of transduction method
on transduction efficacy .....................................................
36 3.2. Genetically engineered NK cells express the transduced targeting
receptor ............................. 38 3.3. Generation of pure NK cell
cultures in order to investigate functionality
................................... 40 3.4. HER-2 expressing targets
specifically activate genetically engineered NK cells
......................... 41 3.4.1. HER-2 expressing transfectant specifically
stimulates CR-NK cells ........................................ 41 3.4.2.
Classification of endogenously expressed HER-2 on carcinoma lines
.................................... 42 3.4.3. CR-NK cells produce cytokines
upon HER-2 recognition ......................................................
43 3.4.4. All tested HER-2 positive carcinoma lines are specifically
recognized by CR-NK cells ............. 44 3.4.5. MHC class I expression on
tumor cells does not impact on tumor recognition ....................... 46
3.4.6. Analysis of IFN- γ production by CR-NK cells at single cell level
.......................................... 47 3.4.7. IL-2 is specifically
produced by CR-NK cells
...................................................................... 48 3.5.
CR-NK cell cytotoxicity response towards HER-2 expressing targets
....................................... 48 3.6. CR-NK activation by autologous
cells expressing HER-2
......................................................... 51 3.7. Fresh tumor
cells are recognized by both allogeneic and autologous CR-NK cells
..................... 52 3.8. NKG2D blockade has no impact on specific HER-2
recognition ................................................ 55 3.8.1. Binding
of MICA to NKG2D on NK cells
..............................................................................
55 3.8.2. No down-modulation of NKG2D on NK cells after overnight exposure to
soluble recombinant MICA
...............................................................................................................................................
56 3.8.3. Selection of tumor cell lines based on NKG2D ligand expression
.......................................... 56 3.8.4. No negative impact of
NKG2D blockade on HER-2 specific recognition by CR-engineered NK cells
...............................................................................................................................................
57 3.9. CR-mediated recognition compares favorably with trastuzumab mediated
NK cell activation ...... 59 3.10. Tumor challenge model and in vivo imaging
........................................................................ 63
4\. Discussion
............................................................................................................................
69 4.1. Optimization of a transduction protocol in order to engineer primary
human NK cells ................ 70 4.2. Expression and functionality of the CR
in
vitro........................................................................
71 4.2.1. HER-2 specific recognition
................................................................................................
71 4.2.2. Adjusted NK cell activation level based on HER-2 expression level
....................................... 71 4.2.3. IFN-γ and IL-2 are
specifically produced by NK cells
........................................................... 72 4.2.4. CR-NK
cells exert cytotoxicity towards HER-2 positive targets
.............................................. 73 4.3. CR mediated activation
overrides inhibition to „self‟
............................................................... 74 4.4.
Freshly isolated tumor cells are similarly targeted by allogenic and
autologous NK cells............. 75 4.5. NKG2D blockade does not impair HER-2
recognition .............................................................. 75
4.6. Advantage of the CR-NK approach over trastuzumab-mediated therapy
.................................. 77 4.7. Tumor challenge and in vivo imaging
...................................................................................
78 4.8. Improvement of safety and efficacy
.....................................................................................
79 4.9. Prospective studies
.............................................................................................................
81 Summary
.................................................................................................................................
84 Zusammenfassung
....................................................................................................................
85 Abbreviations
............................................................................................................................
86 References
................................................................................................................................
90 Publication
...............................................................................................................................
105 Presentations at Conferences
....................................................................................................
105 Curriculum Vitae
......................................................................................................................
106 Eidesstattliche Erklärung
...........................................................................................................
108
dc.description.abstract
NK cells are promising effectors for tumor adoptive immunotherapy,
particularly when considering the targeting of MHC class I low or negative
tumors. Yet, many tumor cells are resistant to NK killing, which is mainly the
case for non-hematopoietic tumors such as carcinomas or melanoma, even when
these cells lose MHC class I expression. In this study, primary human NK cells
were engineered by gene transfer of an activating chimeric receptor (CR)
specific for HER-2, which is frequently overexpressed on carcinomas. To tip
the signal balance towards activation, the antigen-binding domain in this CR
was fused to the joined CD3ζ and CD28 signaling domains. I found that these
targeted NK cells were specifically activated upon recognition of any HER-2
positive tumor cell tested as indicated by high levels of cytokine secretion
as well as degranulation and tumor cell lysis. The magnitude of this specific
response correlated with the level of HER-2 expression on the tumor cells and
was independent of their MHC class I expression level. Remarkably, CR-mediated
activation was shown to override inhibition to „self‟ in an autologous
setting. Also, freshly isolated HER-2 positive tumor cells from ovarian cancer
patients were efficiently targeted by allogeneic and autologous CR-engineered
NK cells. Importantly, blocking of NKG2D, which is known to render NK cells
less responsive, did not have any impact on this CR-meidated HER-2 specific
recognition. Moreover, a side-by-side comparison revealed a superior
recognition of the CR over trastuzumab-mediated NK cell activation. Finally,
these CR transduced NK cells, but not their mock transduced counterpart,
eliminated coinjected tumor cells in NOD/SCID and RAG2 knockout mice as
visualized by in vivo imaging. The major advantage of this approach is the
direct coupling of the specificity of the chimeric receptor to the function of
NK cells that makes it superior to the currently widely used approach based on
monoclonal antibodies, which have a short half-life. Moreover, the antibody
therapy strongly depends on the patient‟s given FcγR composition. Finally,
only 30 % of HER-2 positive tumors are responsive to trastuzumab therapy.
Taken together, these results indicate that the expression of this activating
chimeric receptor overrides inhibitory signals in primary human NK cells and
directs them specifically towards all tested HER-2 expressing tumor cells both
in vitro and in vivo.
de
dc.description.abstract
NK-Zellen sind vielversprechende Effektoren im Hinblick auf adoptive
Immuntherapie von Tumoren, vor allem wenn man auf Tumore mit wenig oder keiner
MHC-Klasse-I-Expression abzielt. Trotzdem sind viele Tumore resistent gegen
den Angriff durch NK-Zellen, was besonders für Tumore des nicht-
hämatopoietischen Ursprungs wie Karzinome und Melanome zutrifft. In dieser
Studie wurden primäre humane NK-Zellen durch Gentransfer mit einem
aktivierenden, chimären Rezeptor (CR) spezifisch für HER-2 versehen, welches
häufig auf Karzinomen überexprimiert ist. Durch Fusion der Antigen-
Bindungsdomäne mit der gekoppelten CD3ζ- und CD28-Signaldomäne wurde die
Signal-Balance zugunsten von Aktivierung verschoben. Die CR-modifizierten NK-
Zellen wurden aufgrund der Erkennung jeglicher getesteter HER-2 positiver
Tumorzellen spezifisch aktiviert, was durch einen hohen Grad von Zytokin-
Produktion, Degranulation sowie Tumorzell-Lyse belegt wurde. Das Ausmaß der
spezifischen Antwort korrelierte mit dem HER-2-Expressionsniveau und war
unabhängig von dem MHC-Klasse-I Expressionsniveau. Die CR-vermittelte
Aktivierung hat überdies die Selbstinhibition, welche in einem autologen
Milieu das Angreifen eigener Zellen verhindert, aufgehoben, und auch frisch
isolierte, HER-2-positive Tumorzellen von Ovarialkarzinom-Patienten wurden
effizient durch allogene und autologe CR-modifizierte NK-Zellen erkannt. Des
Weiteren hatte die Blockierung von NKG2D keinen Einfluss auf die CR-
vermittelte, HER-2-spezifische Erkennung. Im direkten Vergleich war der CR-
Ansatz der trastuzumab-vermittelten Erkennung überlegen. Schließlich haben die
CR-transduzierten NK-Zellen effizient Tumorzellen in NOD/SCID- sowie RAG2
-knockout-Mäusen beseitigt. Der Vorteil dieser Studie liegt in der Koppelung
der Spezifität des CR an die Funktion der NK-Zellen, wodurch dieser Ansatz den
zur Zeit eingesetzten monoklonalen Antikörpern überlegen ist, da diese eine
kurze Lebensdauer haben. Außerdem hängt die Antikörpertherapie stark von der
gegebenen FcγR-Komposition des Patienten ab. Überdies sprechen lediglich 30 %
der HER-2-positiven Tumore auf die trastuzumab-Therapie an. Zusammengefasst
zeigen diese Ergebnisse, dass die Expression eines aktivierenden, chimären
Rezeptors die inhibierenden Signale in primären humanen NK-Zellen aufhebt, und
dass diese NK-Zellen gegen alle getesteten HER-2 positiven Tumorzellen sowohl
in vitro als auch in vivo spezifisch vorgehen.
de
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
cellular therapy
dc.subject
adoptive immunotherapy
dc.subject
chimeric receptor
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie
dc.title
Engineering antigen-specific primary human NK cells against HER-2 positive
carcinomas
dc.contributor.contact
annakruschinski@hotmail.com
dc.contributor.firstReferee
Prof. Thomas Blankensten
dc.contributor.furtherReferee
Prof. Hinrich Abken
dc.date.accepted
2010-05-17
dc.date.embargoEnd
2011-06-28
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000018233-1
dc.title.translated
Entwicklung antigen-spezifischer primärer humaner NK-Zellen zur Bekämpfung von
HER-2-positiven Karcinomen
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000018233
refubium.mycore.derivateId
FUDISS_derivate_000000007907
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access