dc.contributor.author
Pozios, Ioannis
dc.contributor.author
Seel, Nina N.
dc.contributor.author
Hering, Nina A.
dc.contributor.author
Hartmann, Lisa
dc.contributor.author
Liu, Verena
dc.contributor.author
Camaj, Peter
dc.contributor.author
Müller, Mario H.
dc.contributor.author
Lee, Lucas D.
dc.contributor.author
Bruns, Christiane J.
dc.contributor.author
Kreis, Martin E.
dc.contributor.author
Seeliger, Hendrik
dc.date.accessioned
2022-07-22T13:13:12Z
dc.date.available
2022-07-22T13:13:12Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/35646
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-35360
dc.description.abstract
Purpose: Currently, the exact role of estrogen receptor (ER) signaling in pancreatic cancer is unknown. Recently, we showed that expression of phosphorylated ERβ correlates with a poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). Here, we hypothesized that raloxifene, a FDA-approved selective ER modulator (SERM), may suppress PDAC tumor growth by interfering with ERβ signaling. To test this hypothesis, we studied the impact of raloxifene on interleukin-6/glycoprotein-130/signal transducer and activator of transcription-3 (IL-6/gp130/STAT3) signaling.
Methods: Human PDAC cell lines were exposed to raloxifene after which growth inhibition was assessed using a BrdU assay. ER knockdown was performed using siRNAs specific for ERα and ERβ. The effects of raloxifene on IL-6 expression and STAT3 phosphorylation in PDAC cells were assessed by ELISA and Western blotting, respectively. In addition, raloxifene was administered to an orthotopic PDAC tumor xenograft mouse model, after which tumor growth was monitored and immunohistochemistry was performed.
Results: Raloxifene inhibited the in vitro growth of PDAC cells, and this effect was reversed by siRNA-mediated knockdown of ERβ, but not of ERα, indicating ER isotype-specific signaling. We also found that treatment with raloxifene inhibited the release of IL-6 and suppressed the phosphorylation of STAT3Y705 in PDAC cells. In vivo, we found that orthotopic PDAC tumor growth, lymph node and liver metastases as well as Ki-67 expression were reduced in mice treated with raloxifene.
Conclusions: Inhibition of ERβ and the IL-6/gp130/STAT3 signaling pathway by raloxifene leads to potent reduction of PDAC growth in vitro and in vivo. Our results suggest that ERβ signaling and IL-6/gp130 interaction may serve as promising drug targets for pancreatic cancer and that raloxifene may serve as an attractive therapeutic option for PDAC patients expressing the ERβ isotype.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Pancreatic cancer
en
dc.subject
Estrogen receptor
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Raloxifene inhibits pancreatic adenocarcinoma growth by interfering with ERβ and IL-6/gp130/STAT3 signaling
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s13402-020-00559-9
dcterms.bibliographicCitation.journaltitle
Cellular Oncology
dcterms.bibliographicCitation.originalpublishername
Springer Nature
dcterms.bibliographicCitation.pagestart
167
dcterms.bibliographicCitation.pageend
177
dcterms.bibliographicCitation.volume
44
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
Springer Nature DEAL
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
32940862
dcterms.isPartOf.issn
2211-3428
dcterms.isPartOf.eissn
2211-3436