dc.contributor.author
Jiménez-Cavero, Pilar
dc.contributor.author
Gueckstock, Oliver
dc.contributor.author
Nádvorník, Lukáš
dc.contributor.author
Lucas, Irene
dc.contributor.author
Seifert, Tom S.
dc.contributor.author
Wolf, Martin
dc.contributor.author
Rouzegar, Reza
dc.contributor.author
Brouwer, Piet W.
dc.contributor.author
Becker, Sven
dc.contributor.author
Kampfrath, Tobias
dc.date.accessioned
2022-07-04T11:18:35Z
dc.date.available
2022-07-04T11:18:35Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/35476
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-35191
dc.description.abstract
Spin transport is crucial for future spintronic devices operating at bandwidths up to the terahertz range. In F|N thin-film stacks made of a ferromagnetic/ferrimagnetic layer F and a normal-metal layer N, spin transport is mediated by (1) spin-polarized conduction electrons and/or (2) torque between electron spins. To identify a crossover from (1) to (2), we study laser-driven spin currents in F|Pt stacks where F consists of model materials with different degrees of electrical conductivity. For the magnetic insulators yttrium iron garnet, gadolinium iron garnet (GIG) and γ−Fe2O3, identical dynamics is observed. It arises from the terahertz interfacial spin Seebeck effect (SSE), is fully determined by the relaxation of the electrons in the metal layer, and provides a rough estimate of the spin-mixing conductance of the GIG/Pt and γ−Fe2O3/Pt interfaces. Remarkably, in the half-metallic ferrimagnet Fe3O4 (magnetite), our measurements reveal two spin-current components with opposite direction. The slower, positive component exhibits SSE dynamics and is assigned to torque-type magnon excitation of the A- and B-spin sublattices of Fe3O4. The faster, negative component arises from the pyrospintronic effect and can consistently be assigned to ultrafast demagnetization of minority-spin hopping electrons. This observation supports the magneto-electronic model of Fe3O4. In general, our results provide a route to the contact-free separation of torque- and conduction-electron-mediated spin currents.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Spin caloritronics
en
dc.subject
Spin current
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Transition of laser-induced terahertz spin currents from torque- to conduction-electron-mediated transport
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
184408
dcterms.bibliographicCitation.doi
10.1103/PhysRevB.105.184408
dcterms.bibliographicCitation.journaltitle
Physical Review B
dcterms.bibliographicCitation.number
18
dcterms.bibliographicCitation.volume
105
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PhysRevB.105.184408
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2469-9969
refubium.resourceType.provider
WoS-Alert