dc.contributor.author
Deshpande, Abhinav
dc.contributor.author
Mehta, Arthur
dc.contributor.author
Vincent, Trevor
dc.contributor.author
Quesada, Nicolás
dc.contributor.author
Hinsche, Marcel
dc.contributor.author
Ioannou, Marios
dc.contributor.author
Madsen, Lars
dc.contributor.author
Lavoie, Jonathan
dc.contributor.author
Eisert, Jens
dc.contributor.author
Hangleiter, Dominik
dc.date.accessioned
2022-07-04T10:54:43Z
dc.date.available
2022-07-04T10:54:43Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/35474
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-35189
dc.description.abstract
Photonics is a promising platform for demonstrating a quantum computational advantage (QCA) by outperforming the most powerful classical supercomputers on a well-defined computational task. Despite this promise, existing proposals and demonstrations face challenges. Experimentally, current implementations of Gaussian boson sampling (GBS) lack programmability or have prohibitive loss rates. Theoretically, there is a comparative lack of rigorous evidence for the classical hardness of GBS. In this work, we make progress in improving both the theoretical evidence and experimental prospects. We provide evidence for the hardness of GBS, comparable to the strongest theoretical proposals for QCA. We also propose a QCA architecture we call high-dimensional GBS, which is programmable and can be implemented with low loss using few optical components. We show that particular algorithms for simulating GBS are outperformed by high-dimensional GBS experiments at modest system sizes. This work thus opens the path to demonstrating QCA with programmable photonic processors.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
quantum computational advantage
en
dc.subject
Gaussian boson sampling
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Quantum computational advantage via high-dimensional Gaussian boson sampling
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
eabi7894
dcterms.bibliographicCitation.doi
10.1126/sciadv.abi7894
dcterms.bibliographicCitation.journaltitle
Science Advances
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
8
dcterms.bibliographicCitation.url
https://doi.org/10.1126/sciadv.abi7894
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2375-2548
refubium.resourceType.provider
WoS-Alert