dc.contributor.author
Philipp, Andreas
dc.contributor.author
Göhring, Daniel
dc.date.accessioned
2022-06-23T06:17:20Z
dc.date.available
2022-06-23T06:17:20Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/35359
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-35075
dc.description.abstract
This work presents a novel rule-based interaction-aware
multi-modal prediction method for urban traffic scenarios.
The method takes into account the most common classes of
traffic participants and handles all relevant types of
motion behaviors. The potential trajectories of the traffic
participants are rolled out resulting in multi-modal
probability distributions for the states of all agents for
each prediction time step. The analysis of collision risks
between these trajectories is the basis for the
interaction-awareness. The prediction is fully
interaction-aware by considering also the interactions
between the obstacles. The system is able to predict
complex urban scenarios with numerous different agents in
real-time. The approach is evaluated using real-world
scenarios and in a simulated environments.
en
dc.format.extent
8 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Autonomous Driving
en
dc.subject
Traffic Scenario Prediction
en
dc.subject
Motion Planning
en
dc.subject
Traffic Simulation
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::005 Computerprogrammierung, Programme, Daten
dc.title
Interaction-aware Prediction of Urban Traffic Scenarios
dc.type
Wissenschaftlicher Artikel
dc.title.translated
Interaktionsbewusste Vorhersage urbaner Verkehrsszenarien
de
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik / Dahlem Center for Machine Learning and Robotics
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access