dc.contributor.author
Basilewitsch, Daniel
dc.contributor.author
Zhang, Yaxing
dc.contributor.author
Girvin, S. M.
dc.contributor.author
Koch, Christiane P.
dc.date.accessioned
2022-06-21T11:19:15Z
dc.date.available
2022-06-21T11:19:15Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/35357
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-35073
dc.description.abstract
In continuous-variable quantum computing with qubits encoded in the infinite-dimensional Hilbert space of bosonic modes, it is a difficult task to realize strong and on-demand interactions between the qubits. One option is to engineer a beamsplitter interaction for photons in two superconducting cavities by driving an intermediate superconducting circuit with two continuous-wave drives, as demonstrated in a recent experiment [Gao et al., Phys. Rev. X 8, 021073 (2018)]. Here we show how quantum optimal control theory (OCT) can be used in a systematic way to improve the beamsplitter interaction between the two cavities. We find that replacing the two-tone protocol by a three-tone protocol accelerates the effective beamsplitter rate between the two cavities. The third tone's amplitude and frequency are determined by gradient-free optimization and make use of cavity-transmon sideband couplings. We show how to further improve the three-tone protocol via gradient-based optimization while keeping the optimized drives experimentally feasible. Our work exemplifies how to use OCT to systematically improve practical protocols in quantum information applications.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Quantum computation
en
dc.subject
Quantum control
en
dc.subject
Quantum information processing with continuous variables
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Engineering strong beamsplitter interaction between bosonic modes via quantum optimal control theory
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
023054
dcterms.bibliographicCitation.doi
10.1103/PhysRevResearch.4.023054
dcterms.bibliographicCitation.journaltitle
Physical Review Research
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
4
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PhysRevResearch.4.023054
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2643-1564
refubium.resourceType.provider
WoS-Alert