dc.contributor.author
Mészáros, Tamás
dc.contributor.author
Steiner, Raphael
dc.date.accessioned
2022-11-10T09:10:05Z
dc.date.available
2022-11-10T09:10:05Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/35321
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-35037
dc.description.abstract
The dichromatic number χ→(D) of a digraph D is the smallest k for which it admits a k-coloring where every color class induces an acyclic subgraph. Inspired by Hadwiger's conjecture for undirected graphs, several groups of authors have recently studied the containment of complete directed minors in digraphs with a given dichromatic number. In this note we exhibit a relation of these problems to Hadwiger's conjecture. Exploiting this relation, we show that every directed graph excluding the complete digraph K↔t of order t as a strong minor or as a butterfly minor is O(t(log log t)6)-colorable. This answers a question by Axenovich, Girão, Snyder, and Weber, who proved an upper bound of t4t for the same problem. A further consequence of our results is that every digraph of dichromatic number 22n contains a subdivision of every n-vertex subcubic digraph, which makes progress on a set of problems raised by Aboulker, Cohen, Havet, Lochet, Moura, and Thomassé.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
chromatic number
en
dc.subject
directed graphs
en
dc.subject
graph minors
en
dc.subject
Hadwiger's conjecture
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Complete directed minors and chromatic number
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1002/jgt.22844
dcterms.bibliographicCitation.journaltitle
Journal of Graph Theory
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
623
dcterms.bibliographicCitation.pageend
632
dcterms.bibliographicCitation.volume
101
dcterms.bibliographicCitation.url
https://doi.org/10.1002/jgt.22844
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1097-0118
refubium.resourceType.provider
WoS-Alert