dc.contributor.author
Bean, Nigel
dc.contributor.author
Lewis, Angus
dc.contributor.author
Nguyen, Giang T.
dc.contributor.author
O'Reilly, Malgorzata M.
dc.contributor.author
Sunkara, Vikram
dc.date.accessioned
2023-02-02T08:27:03Z
dc.date.available
2023-02-02T08:27:03Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/35315
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-35031
dc.description.abstract
The stochastic fluid-fluid model (SFFM) is a Markov process {(Xt,Yt,φt),t≥0}, where {φt,t≥0} is a continuous-time Markov chain, the first fluid, {Xt,t≥0}, is a classical stochastic fluid process driven by {φt,t≥0}, and the second fluid, {Yt,t≥0}, is driven by the pair {(Xt,φt),t≥0}. Operator-analytic expressions for the stationary distribution of the SFFM, in terms of the infinitesimal generator of the process {(Xt,φt),t≥0}, are known. However, these operator-analytic expressions do not lend themselves to direct computation. In this paper the discontinuous Galerkin (DG) method is used to construct approximations to these operators, in the form of finite dimensional matrices, to enable computation. The DG approximations are used to construct approximations to the stationary distribution of the SFFM, and results are verified by simulation. The numerics demonstrate that the DG scheme can have a superior rate of convergence compared to other methods.
en
dc.format.extent
42 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Stochastic fluid-fluid processes
en
dc.subject
Stationary distribution
en
dc.subject
Discontinuous Galerkin method
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
A Discontinuous Galerkin Method for Approximating the Stationary Distribution of Stochastic Fluid-Fluid Processes
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s11009-022-09945-2
dcterms.bibliographicCitation.journaltitle
Methodology and Computing in Applied Probability
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
2823
dcterms.bibliographicCitation.pageend
2864
dcterms.bibliographicCitation.volume
24
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s11009-022-09945-2
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1573-7713
refubium.resourceType.provider
WoS-Alert