dc.contributor.author
Zuerl, Matthias
dc.contributor.author
Stoll, Philip
dc.contributor.author
Brehm, Ingrid
dc.contributor.author
Raab, René
dc.contributor.author
Zanca, Dario
dc.contributor.author
Kabri, Samira
dc.contributor.author
Happold, Johanna
dc.contributor.author
Nille, Heiko
dc.contributor.author
Prechtel, Katharina
dc.contributor.author
Wuensch, Sophie
dc.contributor.author
Krause, Marie
dc.contributor.author
Seegerer, Stefan
dc.contributor.author
Fersen, Lorenzo von
dc.contributor.author
Eskofier, Bjoern
dc.date.accessioned
2022-06-16T14:32:23Z
dc.date.available
2022-06-16T14:32:23Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/35286
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-35002
dc.description.abstract
The monitoring of animals under human care is a crucial tool for biologists and zookeepers to keep track of the animals’ physical and psychological health. Additionally, it enables the analysis of observed behavioral changes and helps to unravel underlying reasons. Enhancing our understanding of animals ensures and improves ex situ animal welfare as well as in situ conservation. However, traditional observation methods are time- and labor-intensive, as they require experts to observe the animals on-site during long and repeated sessions and manually score their behavior. Therefore, the development of automated observation systems would greatly benefit researchers and practitioners in this domain. We propose an automated framework for basic behavior monitoring of individual animals under human care. Raw video data are processed to continuously determine the position of the individuals within the enclosure. The trajectories describing their travel patterns are presented, along with fundamental analysis, through a graphical user interface (GUI). We evaluate the performance of the framework on captive polar bears (Ursus maritimus). We show that the framework can localize and identify individual polar bears with an F1 score of 86.4%. The localization accuracy of the framework is 19.9±7.6 cm, outperforming current manual observation methods. Furthermore, we provide a bounding-box-labeled dataset of the two polar bears housed in Nuremberg Zoo.
en
dc.format.extent
16 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
animal welfare
en
dc.subject
animal behavior
en
dc.subject
deep learning
en
dc.subject
object detection
en
dc.subject
animal monitoring
en
dc.subject
behavior observation
en
dc.subject
Ursus maritimus
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Automated Video-Based Analysis Framework for Behavior Monitoring of Individual Animals in Zoos Using Deep Learning - A Study on Polar Bears
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
692
dcterms.bibliographicCitation.doi
10.3390/ani12060692
dcterms.bibliographicCitation.journaltitle
Animals
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
12
dcterms.bibliographicCitation.url
https://doi.org/10.3390/ani12060692
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2076-2615