dc.contributor.author
Fournier, David
dc.date.accessioned
2018-06-07T17:10:28Z
dc.date.available
2014-04-11T08:46:24.942Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/3510
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-7710
dc.description
1\. Introduction
...............................................................................................................................................
8 1.1. The place of evolutionary theory in modern biology
.............................................................................
8 1.1.1. First observation: nothing in experimental biology makes sense,
except in the light of evolution .... 8 1.1.2. Second observation: new
solutions to biological problems using concepts from evolutionary biology are
emerging
....................................................................................................................................
9 1.2. Brief reminder of major concepts of evolutionary biology
.................................................................. 10 1.3.
Evolvability and robustness of living systems
.....................................................................................
12 1.3.1. At the level of genomes
....................................................................................................................
12 1.3.2. At higher degrees of cellular complexity
..........................................................................................
13 1.4. Strategies that promote evolvability
....................................................................................................
14 1.4.1. First strategy: Innovation by gene duplication
..................................................................................
14 1.4.1.1. Concept of gene duplication
..........................................................................................................
14 1.4.1.2. Emergence of protein repeats
.........................................................................................................
14 1.4.2. Second strategy: Evolving new physiological compartments
........................................................... 16 1.4.2.1.
Compartmentalization in metazoans
..............................................................................................
16 1.4.2.2. Evolution of physiological systems
...............................................................................................
17 1.5. Methods to study protein mutations using structural and evolutionary
information ........................... 18 1.5.1. Mutations in the context of
genetic diseases
.....................................................................................
18 1.5.2. Tools to explore the effect of mutations on protein structure and
function ...................................... 19 1.5.2.1. Sequence alignment
.......................................................................................................................
19 1.5.2.2. Prediction tools
..............................................................................................................................
19 1.5.2.3. Protein visualization
.......................................................................................................................
19 1.6. Thesis outline
.......................................................................................................................................
20 2\. Emergence of proteins with alpha-solenoids
..........................................................................................
21 2.1. Introduction
..........................................................................................................................................
21 2.1.1. Functional and genomic analyses of alpha-solenoid proteins
........................................................... 21 2.1.2. Function
of huntingtin alpha-solenoid region and prediction of consequence of mutations
for its structure
......................................................................................................................................................
23 2.2. Detection of alpha-solenoids
................................................................................................................
23 2.2.1. Introduction to artificial neural networks
..........................................................................................
24 2.2.2. Presentation of the neural network of ARD
......................................................................................
28 2.2.3. Improvements of ARD
......................................................................................................................
29 2.2.4. Evaluation of ARD2 performance
.....................................................................................................
31 2.3. Structure of alpha-
solenoids.................................................................................................................
34 2.3.1. Some types of alpha-helical repeats are newly classified as alpha-
solenoids ................................... 34 2.3.2. Alpha-solenoids can
interact with nucleic acids and lipids
............................................................... 35 2.3.3.
Alpha-solenoids can be located outside as well as inside of proteins
............................................... 37 2.4. Functions of alpha-
solenoids
...............................................................................................................
37 2.4.1. Alpha-solenoid proteins are promiscuous
.........................................................................................
38 2.4.2. Alpha-solenoid proteins are primarily involved in intracellular
trafficking...................................... 39 2.4.3. Some proteins are
newly detected as containing alpha-
solenoids..................................................... 41 2.5.
Distribution of alpha-solenoid proteins across the tree of life
............................................................. 43 2.6. Modeling
of an alpha-solenoid region of protein huntingtin
............................................................... 47 2.6.1.
Introduction
.......................................................................................................................................
47 2.6.2.
Methods.............................................................................................................................................
49 2.6.3. Results and discussion
......................................................................................................................
51 2.6.4. Conclusion
........................................................................................................................................
59 2.7. General conclusion of chapter 2
...........................................................................................................
60 5 3\. Emergence and evolution of the renin-angiotensin-aldosterone system
................................................. 63 3.1. Introduction
..........................................................................................................................................
63 3.1.1. Introduction to regulation of blood pressure
.....................................................................................
64 3.1.1.1. Definition of blood pressure
..........................................................................................................
64 3.1.1.2. Sensors of blood pressure variation
...............................................................................................
65 3.1.1.3. Effectors of blood pressure
............................................................................................................
65 3.1.2. Presentation of the renin-angiotensin-aldosterone system
................................................................ 67 3.1.2.1.
Anatomical and physiological features
..........................................................................................
67 3.1.2.2. Molecular features
.........................................................................................................................
68 3.1.3. Putative mechanisms leading to hypertension
..................................................................................
70 3.2. Evolution of anatomical and physiological features of the renin-
angiotensin-aldosterone system (RAAS)
.......................................................................................................................................................
70 3.3. Analysis of DNA sequences of proteins of the renin-angiotensin-
aldosterone system ....................... 70 3.3.1. Angiotensinogen
...............................................................................................................................
72 3.3.2. Angiotensin-converting enzymes
......................................................................................................
76 3.3.3. Renin
.................................................................................................................................................
80 3.3.4. Evolution of RAAS targets
...............................................................................................................
82 3.3.4.1. AT1 and AT2
...................................................................................................................................
82 3.3.4.2. (P)RR
.............................................................................................................................................
83 3.3.4.3. MAS
...............................................................................................................................................
83 3.3.4.4. Mineralocorticoid receptor
.............................................................................................................
84 3.4. Conclusion
...........................................................................................................................................
86 4\. Methods to study the impact of mutations on proteins related to disease
using structural and evolutionary information
............................................................................................................................
88 4.1. Introduction
..........................................................................................................................................
88 4.2. PDBpaint, a visualization tool to display proteins using functional
annotations ................................. 89 4.2.1. Introduction
.......................................................................................................................................
89 4.2.2. Functionalities of PDBpaint
..............................................................................................................
90 4.2.3. Technical specifications of PDBpaint
...............................................................................................
93 4.2.4. Comparison with other tools
.............................................................................................................
93 4.2.5. Conclusion of section 4.2.
.................................................................................................................
94 4.3. Study of deleterious mutations in huntingtin interacting protein
CRMP-1 ......................................... 95 4.3.1. Introduction
.......................................................................................................................................
95 4.3.2.
Methods.............................................................................................................................................
96 4.3.3. Results and discussion
......................................................................................................................
96 4.3.3.1. Design of CRMP-1 mutants
...........................................................................................................
96 4.3.3.2. Impact of mutation D408V on the function of CRMP-1
............................................................... 99 4.3.4.
Conclusion
......................................................................................................................................
101 4.4. Study of myosin mutations involved in cardiac septal defects.
......................................................... 102 4.4.1.
Introduction
.....................................................................................................................................
102 4.4.2.
Methods...........................................................................................................................................
102 4.4.3. Results and discussion
....................................................................................................................
103 4.4.4. Conclusion
......................................................................................................................................
105 4.5. Conclusion to chapter 4
.....................................................................................................................
105 5\. General conclusion
................................................................................................................................
106 Summary
...................................................................................................................................................
107 Zusammenfassung
.....................................................................................................................................
108 Appendix
...................................................................................................................................................
109 Bibliography
.............................................................................................................................................
128 List of publications
...................................................................................................................................
141 Curriculum vitae
.......................................................................................................................................
142
dc.description.abstract
Evolution is a major actor of function of living beings. Studying biological
processes with the perspective of an evolutionary biologist is important in
order to have the most complete picture possible of the processes acting in
nature. Following this idea, we have studied protein sequences to study two
different biological systems. Such information was used to build evolutionary
scenarios for our two questions. We first studied alpha-solenoid repeat
proteins. We have improved a method to detect such motives inside of protein
sequences and applied this updated method to all sequences available in
protein databases. The study of the distribution of such sequences in the tree
of life shows that eukaryota are the taxons displaying the most this type of
structure, as well as two groups of bacteria, cyanobacteria and
planctomycetes. Importantly, the three groups of alpha-solenoid show limit
similarity. We speculate that they appeared independently. Equally important,
the three groups, eukaryota and the two bacteria taxons, are associated with
increased cellular complexity versus classical bacteria groups. We
hypothesized that the increased demand of protein important to protein
transport and synthesis in living beings with compartmentalized cells induces
a higher recruitment of alpha-solenoid proteins, as they require more complex
protein machinery in order to be built. This high pressure could have occurred
in the three groups independently, increased the recruitment of alpha-solenoid
proteins. The second evolutionary scenario we tried to put together is about
the renin-angiotensin system which regulates hypertension in higher
vertebrates. To perform this, we conducted a phylogenetic analysis of a dozen
of proteins involved in the system, from higher vertebrates to invertebrates.
We found that contrary to naïve thinking, some of the components of the system
appeared before the set of the system, and had a complete different function,
showing orthologue sequences in invertebrates. Some proteins, present in
taxons with no regulation of hypertension such as Drosophila, were previously
used for development a long time before being co-opted for homeostasis
regulation in vertebrates. We could confirm the onset of the system around the
appearance of cartilage fishes, around 400 million years ago. Both analysis,
of alpha-solenoid repeat proteins and protein sequences from the renin-
angiotensin system, showed the importance of using evolutionary cues in order
to better comprehend how living being work. Aside from these evolutionary
scenarios, we also used evolutionary along with structural information in
order to study the impact of mutations for the structure of various proteins,
and the relation of such mutations to disease and function. For these
analyses, we have developed a tool called PDBpaint to visualize various
annotations on the structure of proteins.
de
dc.description.abstract
Evolution prägt die Funktionsweise aller Lebewesen. Es ist notwendig
biologische Prozesse aus der Perspektive eines Evolutionsbiologen zu
betrachten, wenn man ein möglichst vollständiges Bild von den natürlichen
Vorgängen erhalten möchte. In diesem Sinne haben wir Proteinsequenzen
herangezogen um zwei verschiedene biologische Systeme zu untersuchen und um
Evolutionsszenarios für unsere beiden Fragestellungen zu entwickeln. Zunächst
analysierten wir Proteine mit sich wiederholenden Alpha-Solenoidsequenzen. Wir
verbesserten eine Methode zur Detektion solcher Motive innerhalb von
Proteinsequenzen und wandten die verbesserte Methode auf alle Sequenzen an,
die in Proteindatenbanken erhältlich waren. Die Untersuchung der Verteilung
solcher Motive im phylogenetischen Stammbaum der Arten zeigte, dass besonders
Eukaryonten und zwei Gruppen von Bakterien, die Cyanobakterien und
Planctomyceten, diese Struktur tragen. Wichtig hierbei ist, dass die drei
Gruppen von Alpha-Solenoidsequenzen nur begrenzte Ähnlichkeit aufweisen. Wir
nehmen an, dass sie unabhängig voneinander entstanden sind. Genauso wichtig
ist, dass die drei Gruppen, Eukaryonten und die zwei bakteriellen Taxa, ein
erhöhtes Maß an zellulärer Komplexität aufweisen im Vergleich mit anderen
bakteriellen Gruppen. Unsere Hypothese ist, dass Alpha-Solenoid Proteine durch
den zunehmendem Bedarf an Proteinen für Transport und Synthese in Lebewesen
mit kompartmentalisieren Zellenvermehrt entstehen, da sie eine komplexe
Proteinmaschinerie benötigen, um gebildet zu werden. Dieser Druck könnte in
allen drei Gruppen unabhängig bewirkt haben, dass Alpha-Solenoid Proteine in
immer größerer Zahl hervorgebracht wurden. Das zweite evolutionäre Szenario,
das wir untersuchten, das Renin-Angiotensin System, reguliert Bluthochdruck in
höheren Vertebraten. Wir unternahmen eine phylogenetische Analyse von zwölf
Proteinen, die in das System involviert sind, von höheren Vertebraten bis hin
zu Invertebraten. Wir fanden heraus, dass entgegen unseren Erwartungen einige
Komponenten lange vor dem eigentlichen Regulationssystem auftraten, mit völlig
anderen Funktionen, gezeigt anhand von orthologen Sequenzen in Invertebraten.
Einige Proteine, die in Taxa ohne Regulation von Bluthuchdruck zu finden sind,
so wie Drosophila, wurden schon lange vorher für die Regulation von
Entwicklung verwendet. Wir konnten bestätigen, dass das System etwa
gleichzeitig mit den Knorpelfischen entstand, ca. vor 400 Millionen Jahren.
Beide Analysen, sowohl die der Alpha-Solenoid Proteine als auch der
Proteinsequenzen des Renin-Angiotensin Systems, haben gezeigt, wie wichtig es
ist, Hinweise aus der Evolution in die Betrachtungen mit einzubeziehen, bei
dem Versuch Lebewesen und ihre Funktionsweise, zu verstehen. Neben diesen
Evolutionsszenarios verwendeten wir evolutionäre gleichzeitig mit
strukturellen Informationen um den Einfluss von Mutationen auf die Struktur
verschiedener Proteine zu erforschen, sowie die Beziehung solcher Mutationen
zu Krankheit und Funktion. Für solche Analysen haben wir PDBpaint entwickelt,
ein Werkzeug zur Visualisierung von Annotationen in Proteinstrukturen.
de
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
structural biology
dc.subject
alpha-solenoids
dc.subject
bioinformatics
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::572 Biochemie
dc.title
Evolvability of proteomes
dc.contributor.firstReferee
Prof. Dr. Udo Heinemann
dc.contributor.furtherReferee
Prof. Dr. Erich Wanker
dc.date.accepted
2014-04-04
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000096479-0
dc.title.subtitle
Predicting protein function in the light of evolution
dc.title.translated
Evolvabilität der Proteome
de
dc.title.translatedsubtitle
Proteine Funktion Prädiktion im Licht der Evolution
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000096479
refubium.mycore.derivateId
FUDISS_derivate_000000015042
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access