dc.contributor.author
Pöschel, Carla
dc.date.accessioned
2022-05-19T09:29:24Z
dc.date.available
2022-05-19T09:29:24Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/35047
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34764
dc.description.abstract
Despite the growing literature on tax incentives for research and development (R&D), little is known about how the design aspects of the fiscal policies shape the effectiveness. This paper applies meta-regression techniques to assess the effect of various design attributes on innovation inputs. Using 496 estimates from 37 studies exploiting direct approaches, the results indicate that the base definition of tax incentives substantially drive the heterogeneity found in the literature. MetaForest, a novel machine learning algorithm, confirms these results. Furthermore, I find significant publication bias in favor of reporting positive effects of fiscal incentives, which is more prevalent among studies published in peer-reviewed journals.
en
dc.publisher
Freie Universität Berlin
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
tax incentives
en
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft::336 Öffentliche Finanzen
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft::330 Wirtschaft
dc.title
Data - Incentive Effects of R&D Tax Incentives: A Meta-Analysis
dc.contributor.type
data_collector
refubium.affiliation
Wirtschaftswissenschaft
refubium.affiliation.other
Betriebswirtschaftliche Steuerlehre
dcterms.accessRights.openaire
open access