dc.contributor.author
Loche, Philip
dc.contributor.author
Bonthuis, Douwe Jan
dc.contributor.author
Netz, Roland R.
dc.date.accessioned
2022-04-26T08:14:52Z
dc.date.available
2022-04-26T08:14:52Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34854
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34573
dc.description.abstract
Although important for atmospheric processes and gas-phase catalysis, very little is known about the hydration state of ions in the vapor phase. Here we study the evaporation energetics and kinetics of a chloride ion from liquid water by molecular dynamics simulations. As chloride permeates the interface, a water finger forms and breaks at a chloride separation of ≈ 2.8 nm from the Gibbs dividing surface. For larger separations from the interface, about 7 water molecules are estimated to stay bound to chloride in saturated water vapor, as corroborated by continuum dielectrics and statistical mechanics models. This ion hydration significantly reduces the free-energy barrier for evaporation. The effective chloride diffusivity in the transition state is found to be about 6 times higher than in bulk, which reflects the highly mobile hydration dynamics as the water finger breaks. Both effects significantly increase the chloride evaporation flux from the quiescent interface of an electrolyte solution, which is predicted from reaction kinetic theory.
en
dc.format.extent
8 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Chemical physics
en
dc.subject
Computational chemistry
en
dc.subject
Molecular dynamics
en
dc.subject
Statistical mechanics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Molecular dynamics simulations of the evaporation of hydrated ions from aqueous solution
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
55
dcterms.bibliographicCitation.doi
10.1038/s42004-022-00669-5
dcterms.bibliographicCitation.journaltitle
Communications Chemistry
dcterms.bibliographicCitation.volume
5
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s42004-022-00669-5
refubium.affiliation
Physik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2399-3669