dc.contributor.author
Choudhary, Aruni
dc.contributor.author
Mulzer, Wolfgang
dc.date.accessioned
2023-01-02T09:25:13Z
dc.date.available
2023-01-02T09:25:13Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34737
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34457
dc.description.abstract
Tverberg’s theorem states that for any k≥2 and any set P⊂Rd of at least (d+1)(k−1)+1 points in d dimensions, we can partition P into k subsets whose convex hulls have a non-empty intersection. The associated search problem of finding the partition lies in the complexity class CLS=PPAD∩PLS, but no hardness results are known. In the colorful Tverberg theorem, the points in P have colors, and under certain conditions, P can be partitioned into colorful sets, in which each color appears exactly once and whose convex hulls intersect. To date, the complexity of the associated search problem is unresolved. Recently, Adiprasito, Bárány, and Mustafa (SODA 2019) gave a no-dimensional Tverberg theorem, in which the convex hulls may intersect in an approximate fashion. This relaxes the requirement on the cardinality of P. The argument is constructive, but does not result in a polynomial-time algorithm. We present a deterministic algorithm that finds for any n-point set P⊂Rd and any k∈{2,…,n} in O(nd⌈logk⌉) time a k-partition of P such that there is a ball of radius O((k/n−−√)diam(P)) that intersects the convex hull of each set. Given that this problem is not known to be solvable exactly in polynomial time, our result provides a remarkably efficient and simple new notion of approximation. Our main contribution is to generalize Sarkaria’s method (Israel Journal Math., 1992) to reduce the Tverberg problem to the colorful Carathéodory problem (in the simplified tensor product interpretation of Bárány and Onn) and to apply it algorithmically. It turns out that this not only leads to an alternative algorithmic proof of a no-dimensional Tverberg theorem, but it also generalizes to other settings such as the colorful variant of the problem.
en
dc.format.extent
33 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Tverberg theorem
en
dc.subject
Colorful Carathéodory theorem
en
dc.subject
Approximation algorithm
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
No-Dimensional Tverberg Theorems and Algorithms
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00454-022-00380-1
dcterms.bibliographicCitation.journaltitle
Discrete & Computational Geometry
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
964
dcterms.bibliographicCitation.pageend
996
dcterms.bibliographicCitation.volume
68
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00454-022-00380-1
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-0444