dc.contributor.author
Haferkamp, Jonas
dc.contributor.author
Faist, Philippe
dc.contributor.author
Kothakonda, Naga B. T.
dc.contributor.author
Eisert, Jens
dc.contributor.author
Yunger Halpern, Nicole
dc.date.accessioned
2022-05-27T08:11:15Z
dc.date.available
2022-05-27T08:11:15Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34709
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34429
dc.description.abstract
The complexity of quantum states has become a key quantity of interest across various subfields of physics, from quantum computing to the theory of black holes. The evolution of generic quantum systems can be modelled by considering a collection of qubits subjected to sequences of random unitary gates. Here we investigate how the complexity of these random quantum circuits increases by considering how to construct a unitary operation from Haar-random two-qubit quantum gates. Implementing the unitary operation exactly requires a minimal number of gates—this is the operation’s exact circuit complexity. We prove a conjecture that this complexity grows linearly, before saturating when the number of applied gates reaches a threshold that grows exponentially with the number of qubits. Our proof overcomes difficulties in establishing lower bounds for the exact circuit complexity by combining differential topology and elementary algebraic geometry with an inductive construction of Clifford circuits.
en
dc.format.extent
7 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Information theory and computation
en
dc.subject
Quantum information
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Linear growth of quantum circuit complexity
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1038/s41567-022-01539-6
dcterms.bibliographicCitation.journaltitle
Nature Physics
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.pagestart
528
dcterms.bibliographicCitation.pageend
532
dcterms.bibliographicCitation.volume
18
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41567-022-01539-6
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1745-2481