dc.contributor.author
Chiu, Man-Kwun
dc.contributor.author
Korman, Matias
dc.contributor.author
Suderland, Martin
dc.contributor.author
Tokuyama, Takeshi
dc.date.accessioned
2022-10-06T07:36:27Z
dc.date.available
2022-10-06T07:36:27Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34706
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34426
dc.description.abstract
We consider the problem of digitalizing Euclidean segments. Specifically, we look for a constructive method to connect any two points in Zd. The construction must be consistent (that is, satisfy the natural extension of the Euclidean axioms) while resembling them as much as possible. Previous work has shown asymptotically tight results in two dimensions with Θ(logN) error, where resemblance between segments is measured with the Hausdorff distance, and N is the L1 distance between the two points. This construction was considered tight because of a Ω(logN) lower bound that applies to any consistent construction in Z2. In this paper we observe that the lower bound does not directly extend to higher dimensions. We give an alternative argument showing that any consistent construction in d dimensions must have Ω(log1/(d−1)N) error. We tie the error of a consistent construction in high dimensions to the error of similar weak constructions in two dimensions (constructions for which some points need not satisfy all the axioms). This not only opens the possibility for having constructions with o(logN) error in high dimensions, but also opens up an interesting line of research in the tradeoff between the number of axiom violations and the error of the construction. A side result, that we find of independent interest, is the introduction of the bichromatic discrepancy: a natural extension of the concept of discrepancy of a set of points. In this paper, we define this concept and extend known results to the chromatic setting.
en
dc.format.extent
43 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Consistent digital line segments
en
dc.subject
Digital geometry
en
dc.subject
Computer vision
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Distance Bounds for High Dimensional Consistent Digital Rays and 2-D Partially-Consistent Digital Rays
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00454-021-00349-6
dcterms.bibliographicCitation.journaltitle
Discrete & Computational Geometry
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
902
dcterms.bibliographicCitation.pageend
944
dcterms.bibliographicCitation.volume
68
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00454-021-00349-6
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-0444