dc.contributor.author
Kliem, Jonathan
dc.contributor.author
Stump, Christian
dc.date.accessioned
2022-05-27T09:30:39Z
dc.date.available
2022-05-27T09:30:39Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34705
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34425
dc.description.abstract
We discuss a new memory-efficient depth-first algorithm and its implementation that iterates over all elements of a finite locally branched lattice. This algorithm can be applied to face lattices of polyhedra and to various generalizations such as finite polyhedral complexes and subdivisions of manifolds, extended tight spans and closed sets of matroids. Its practical implementation is very fast compared to state-of-the-art implementations of previously considered algorithms. Based on recent work of Bruns, García-Sánchez, O’Neill, and Wilburne, we apply this algorithm to prove Wilf’s conjecture for all numerical semigroups of multiplicity 19 by iterating through the faces of the Kunz cone and identifying the possible bad faces and then checking that these do not yield counterexamples to Wilf’s conjecture.
en
dc.format.extent
27 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Wilf’s conjecture
en
dc.subject
Numerical Semigroup
en
dc.subject
Face lattice
en
dc.subject
Face iterator
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
A New Face Iterator for Polyhedra and for More General Finite Locally Branched Lattices
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00454-021-00344-x
dcterms.bibliographicCitation.journaltitle
Discrete & Computational Geometry
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
1147
dcterms.bibliographicCitation.pageend
1173
dcterms.bibliographicCitation.volume
67
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00454-021-00344-x
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-0444