dc.contributor.author
Zahn, Daniela
dc.contributor.author
Jakobs, Florian
dc.contributor.author
Seiler, Hélène
dc.contributor.author
Butcher, Tim A.
dc.contributor.author
Engel, Dieter
dc.contributor.author
Vorberger, Jan
dc.contributor.author
Atxitia, Unai
dc.contributor.author
Windsor, Yoav William
dc.contributor.author
Ernstorfer, Ralph
dc.date.accessioned
2022-04-12T05:36:20Z
dc.date.available
2022-04-12T05:36:20Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34676
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34394
dc.description.abstract
Ultrafast magnetization dynamics are governed by energy flow between electronic, magnetic, and lattice degrees of freedom. A quantitative understanding of these dynamics must be based on a model that agrees with experimental results for all three subsystems. However, ultrafast dynamics of the lattice remain largely unexplored experimentally. Here we combine femtosecond electron diffraction experiments of the lattice dynamics with energy-conserving atomistic spin dynamics (ASD) simulations and ab initio calculations to study the intrinsic energy flow in the 3d ferromagnets cobalt (Co) and iron (Fe). The simulations yield a good description of experimental data, in particular an excellent description of our experimental results for the lattice dynamics. We find that the lattice dynamics are influenced significantly by the magnetization dynamics due to the energy cost of demagnetization. Our results highlight the role of the spin system as the dominant heat sink in the first hundreds of femtoseconds. Together with previous findings for nickel [Zahn et al., Phys. Rev. Research 3, 023032 (2021)], our work demonstrates that energy-conserving ASD simulations provide a general and consistent description of the laser-induced dynamics in all three elemental 3d ferromagnets.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Electron-phonon coupling
en
dc.subject
Lattice dynamics
en
dc.subject
Ultrafast magnetization dynamics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Intrinsic energy flow in laser-excited 3d ferromagnets
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
013104
dcterms.bibliographicCitation.doi
10.1103/PhysRevResearch.4.013104
dcterms.bibliographicCitation.journaltitle
Physical Review Research
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
4
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PhysRevResearch.4.013104
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2643-1564
refubium.resourceType.provider
WoS-Alert