dc.contributor.author
Skrodzki, Martin
dc.contributor.author
Zimmermann, Eric
dc.date.accessioned
2022-04-07T13:59:33Z
dc.date.available
2022-04-07T13:59:33Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34630
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34348
dc.description.abstract
In this paper, we define and evaluate a weighting scheme for neighborhoods in point sets. Our weighting takes the shape of the geometry, i.e., the normal information, into account. This causes the obtained neighborhoods to be more reliable in the sense that connectivity also depends on the orientation of the point set. We utilize a sigmoid to define the weights based on the normal variation. For an evaluation of the weighting scheme, we turn to a Shannon entropy model for feature classification that can be proven to be non-degenerate for our family of weights. Based on this model, we evaluate our weighting terms on a large scale of both clean and real-world models. This evaluation provides results regarding the choice of optimal parameters within our weighting scheme. Furthermore, the large-scale evaluation also reveals that neighborhood sizes should not be fixed globally when processing models. Finally, we highlight the applicability of our weighting scheme within the application context of denoising.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Neighborhoods
en
dc.subject
Classification
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
A Large-Scale Evaluation Of Shape-Aware Neighborhood Weights And Neighborhood Sizes
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
103107
dcterms.bibliographicCitation.doi
10.1016/j.cad.2021.103107
dcterms.bibliographicCitation.journaltitle
Computer-Aided Design
dcterms.bibliographicCitation.volume
141
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.cad.2021.103107
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1879-2685
refubium.resourceType.provider
WoS-Alert