dc.contributor.author
Almalla, Ahed
dc.contributor.author
Ozcan, Ozlem
dc.contributor.author
Witt, Julia
dc.date.accessioned
2022-07-04T08:58:41Z
dc.date.available
2022-07-04T08:58:41Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34589
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34307
dc.description.abstract
The application of characterization methods with high spatial resolution to the analysis of buried coating/metal interfaces requires the design and use of model systems. Herein, an epoxy-like thin film is used as a model coating resembling the epoxy-based coatings and adhesives widely used in technical applications. Spin coating is used for the deposition of a 30 nm-thin bilayer (BL) composed of poly-(ethylenimine) (PEI) and poly[(o-cresyl glycidyl ether)-co-formaldehyde] (CNER). Fourier-transform infrared spectroscopy (FTIR) results confirm that the exposure of coated AA2024-T3 (AA) samples to the corrosive electrolyte solution does not cause the degradation of the polymer layer. In situ atomic force microscopy (AFM) studies are performed to monitor local corrosion processes at the buried interface of the epoxy-like film and the AA2024-T3 aluminum alloy surface in an aqueous electrolyte solution. Hydrogen evolution due to the reduction of water as the cathodic corrosion reaction leads to local blister formation. Based on the results of the complementary energy-dispersive X-ray spectroscopy (EDX) analysis performed at the same region of interest, most of the hydrogen evolved originates at the vicinity of Mg-containing intermetallic particles.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
aluminum alloys
en
dc.subject
buried interfaces
en
dc.subject
in situ atomic force microscopy
en
dc.subject
local corrosion
en
dc.subject
scanning Kelvin probe force microscopy
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
In Situ Atomic Force Microscopy Analysis of the Corrosion Processes at the Buried Interface of an Epoxy-like Model Organic Film and AA2024-T3 Aluminum Alloy
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2101342
dcterms.bibliographicCitation.doi
10.1002/adem.202101342
dcterms.bibliographicCitation.journaltitle
Advanced Engineering Materials
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.volume
24
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adem.202101342
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1527-2648
refubium.resourceType.provider
WoS-Alert