dc.contributor.author
Hempel, Tim
dc.contributor.author
Razo, Mauricio J. del
dc.contributor.author
Lee, Christopher T.
dc.contributor.author
Taylor, Bryn C.
dc.contributor.author
Amaro, Rommie E.
dc.contributor.author
Noe, Frank
dc.date.accessioned
2022-05-18T12:19:33Z
dc.date.available
2022-05-18T12:19:33Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34558
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34276
dc.description.abstract
In order to advance the mission of in silico cell biology, modeling the interactions of large and complex biological systems becomes increasingly relevant. The combination of molecular dynamics (MD) and Markov state models (MSMs) have enabled the construction of simplified models of molecular kinetics on long timescales. Despite its success, this approach is inherently limited by the size of the molecular system. With increasing size of macromolecular complexes, the number of independent or weakly coupled subsystems increases, and the number of global system states increase exponentially, making the sampling of all distinct global states unfeasible. In this work, we present a technique called Independent Markov Decomposition (IMD) that leverages weak coupling between subsystems in order to compute a global kinetic model without requiring to sample all combinatorial states of subsystems. We give a theoretical basis for IMD and propose an approach for finding and validating such a decomposition. Using empirical few-state MSMs of ion channel models that are well established in electrophysiology, we demonstrate that IMD can reproduce experimental conductance measurements with a major reduction in sampling compared with a standard MSM approach. We further show how to find the optimal partition of all-atom protein simulations into weakly coupled subunits.
en
dc.format.extent
9 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Markov state models
en
dc.subject
independent processes
en
dc.subject
molecular kinetics
en
dc.subject
molecular dynamics
en
dc.subject
ion channels
en
dc.subject
optimal partition
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Independent Markov decomposition
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
86663
dc.title.subtitle
toward modeling kinetics of biomolecular complexes
dcterms.bibliographicCitation.articlenumber
e2105230118
dcterms.bibliographicCitation.doi
10.1073/pnas.2105230118
dcterms.bibliographicCitation.journaltitle
Proceedings of the National Academy of Sciences of the United States of America
dcterms.bibliographicCitation.number
31
dcterms.bibliographicCitation.originalpublishername
National Academy of Sciences
dcterms.bibliographicCitation.originalpublisherplace
Washington, DC
dcterms.bibliographicCitation.volume
118 (2021)
dcterms.bibliographicCitation.url
https://pnas.org/doi/full/10.1073/pnas.2105230118
dcterms.rightsHolder.url
https://www.pnas.org/author-center/editorial-and-journal-policies#embargo-policy
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0027-8424
dcterms.isPartOf.eissn
1091-6490