dc.contributor.author
Vrijmoed, Johannes Christiaan
dc.contributor.author
Podladchikov, Y. Y.
dc.date.accessioned
2022-04-01T12:11:06Z
dc.date.available
2022-04-01T12:11:06Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34551
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34269
dc.description.abstract
We developed a numerical thermodynamics laboratory called “Thermolab” to study the effects of the thermodynamic behavior of nonideal solution models on reactive transport processes in open systems. The equations of the state of internally consistent thermodynamic data sets are implemented in MATLAB functions and form the basis for calculating Gibbs energy. A linear algebraic approach is used in Thermolab to compute Gibbs energy of mixing for multicomponent phases to study the impact of the nonideality of solution models on transport processes. The Gibbs energies are benchmarked with experimental data, phase diagrams, and other thermodynamic software. Constrained Gibbs minimization is exemplified with MATLAB codes and iterative refinement of composition of mixtures may be used to increase precision and accuracy. All needed transport variables such as densities, phase compositions, and chemical potentials are obtained from Gibbs energy of the stable phases after the minimization in Thermolab. We demonstrate the use of precomputed local equilibrium data obtained with Thermolab in reactive transport models. In reactive fluid flow the shape and the velocity of the reaction front vary depending on the nonlinearity of the partitioning of a component in fluid and solid. We argue that nonideality of solution models has to be taken into account and further explored in reactive transport models. Thermolab Gibbs energies can be used in Cahn-Hilliard models for nonlinear diffusion and phase growth. This presents a transient process toward equilibrium and avoids computational problems arising during precomputing of equilibrium data.
en
dc.format.extent
44 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
thermodynamics
en
dc.subject
Gibbs energy
en
dc.subject
solution models
en
dc.subject
reactive transport
en
dc.subject
nonlinear diffusion
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Thermolab: A Thermodynamics Laboratory for Nonlinear Transport Processes in Open Systems
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2021GC010303
dcterms.bibliographicCitation.doi
10.1029/2021GC010303
dcterms.bibliographicCitation.journaltitle
Geochemistry, Geophysics, Geosystems
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.volume
23
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2021GC010303
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geochemie, Hydrogeologie, Mineralogie
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1525-2027