dc.contributor.author
Reisch, Florian
dc.contributor.author
Kakularam, Kumar Reddy
dc.contributor.author
Stehling, Sabine
dc.contributor.author
Heydeck, Dagmar
dc.contributor.author
Kuhn, Hartmut
dc.date.accessioned
2022-03-16T12:52:34Z
dc.date.available
2022-03-16T12:52:34Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34423
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34141
dc.description.abstract
After 300 million years of evolution, the first land-living mammals reentered the marine environment some 50 million years ago. The driving forces for this dramatic lifestyle change are still a matter of discussion but the struggle for food resources and the opportunity to escape predators probably contributed. Reentering the oceans requires metabolic adaption putting evolutionary pressure on a number of genes. To explore whether eicosanoid signaling has been part of this adaptive response, we first explored whether the genomes of marine mammals involve functional genes encoding for key enzymes of eicosanoid biosynthesis. Cyclooxygenase (COX) and lipoxygenase (ALOX) genes are present in the genome of all marine mammals tested. Interestingly, ALOX12B, which has been implicated in skin development of land-living mammals, is lacking in whales and dolphins and genes encoding for its sister enzyme (ALOXE3) involve premature stop codons and/or frameshifting point mutations, which interrupt the open reading frames. ALOX15 orthologs have been detected in all marine mammals, and the recombinant enzymes exhibit similar catalytic properties as those of land-living species. All marine mammals express arachidonic acid 12-lipoxygenating ALOX15 orthologs, and these data are consistent with the Evolutionary Hypothesis of ALOX15 specificity. These enzymes exhibit membrane oxygenase activity and introduction of big amino acids at the triad positions altered the reaction specificity in favor of arachidonic acid 15-lipoxygenation. Thus, the ALOX15 orthologs of marine mammals follow the Triad concept explaining their catalytic specificity.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
epidermal differentiation
en
dc.subject
lipoxygenases
en
dc.subject
oxidative stress
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Eicosanoid biosynthesis in marine mammals
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1111/febs.15469
dcterms.bibliographicCitation.journaltitle
The FEBS Journal
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.originalpublishername
Wiley
dcterms.bibliographicCitation.pagestart
1387
dcterms.bibliographicCitation.pageend
1406
dcterms.bibliographicCitation.volume
288
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
DEAL Wiley
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
32627384
dcterms.isPartOf.issn
1742-464X
dcterms.isPartOf.eissn
1742-4658