dc.contributor.author
Polzin, Robert
dc.contributor.author
Müller, Annette
dc.contributor.author
Rust, Henning
dc.contributor.author
Névir, Peter
dc.contributor.author
Koltai, Péter
dc.date.accessioned
2022-03-16T10:20:18Z
dc.date.available
2022-03-16T10:20:18Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34415
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34133
dc.description.abstract
We pursue a simplified stochastic representation of smaller scale convective activity conditioned on large-scale dynamics in the atmosphere. For identifying a Bayesian model describing the relation of different scales we use a probabilistic approach by Gerber and Horenko (2017) called Direct Bayesian Model Reduction (DBMR). This is a Bayesian relation model between categorical processes (discrete states), formulated via the conditional probabilities. The convective available potential energy (CAPE) is applied as a large-scale flow variable combined with a subgrid smaller scale time series for the vertical velocity. We found a probabilistic relation of CAPE and vertical up- and downdraft for day and night. This strategy is part of a development process for parametrizations in models of atmospheric dynamics representing the effective influence of unresolved vertical motion on the large-scale flows. The direct probabilistic approach provides a basis for further research on smaller scale convective activity conditioned on other possible large-scale drivers.
en
dc.format.extent
16 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Bayesian model reduction
en
dc.subject
convective activity
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Direct Bayesian model reduction of smaller scale convective activity conditioned on large-scale dynamics
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.5194/npg-29-37-2022
dcterms.bibliographicCitation.journaltitle
Nonlinear Processes in Geophysics
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
Copernicus Publications
dcterms.bibliographicCitation.pagestart
37
dcterms.bibliographicCitation.pageend
52
dcterms.bibliographicCitation.volume
2022/29
dcterms.bibliographicCitation.url
https://doi.org/10.5194/npg-29-37-2022
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1607-7946