dc.contributor.author
Teferi, Mandefro Y.
dc.contributor.author
Malissa, Hans
dc.contributor.author
Morales-Vilches, Anna Belen
dc.contributor.author
Trinh, Cham T.
dc.contributor.author
Korte, Lars
dc.contributor.author
Stannowski, Bernd
dc.contributor.author
Williams, Clayton C.
dc.contributor.author
Boehme, Christoph
dc.contributor.author
Lips, Klaus
dc.date.accessioned
2022-05-12T08:20:01Z
dc.date.available
2022-05-12T08:20:01Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34403
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34121
dc.description.abstract
Silicon heterojunction (SHJ) solar cells represent a promising technological approach toward higher photovoltaic efficiencies and lower fabrication cost. While the device physics of SHJ solar cells has been studied extensively in the past, the ways in which nanoscopic electronic processes such as charge-carrier generation, recombination, trapping, and percolation affect SHJ device properties macroscopically are yet to be fully understood. We report the study of atomic-scale current percolation at state-of-the-art a-Si:H/c-Si heterojunction solar cells at room temperature, revealing the profound complexity of electronic SHJ interface processes. Using conduction atomic force microscopy, it is shown that the macroscopic current–voltage characteristics of SHJ solar cells are governed by the average of local nanometer-sized percolation pathways associated with bandtail states of the doped a-Si:H selective contact leading to above bandgap local photovoltages (VOCloc) as high as 1.2 V (eVOCloc > EgapSi). This is not in violation of photovoltaic device physics but a consequence of the nature of nanometer-scale charge percolation pathways that originate from trap-assisted tunneling causing dark leakage current. We show that the broad distribution of nanoscopic local photovoltage is a direct consequence of randomly trapped charges at a-Si:H dangling bond defects, which lead to strong local potential fluctuations and induce random telegraph noise of the dark current.
en
dc.format.extent
35 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
silicon heterojunction solar cell
en
dc.subject
conduction atomic force microscope
en
dc.subject
bandtail states
en
dc.subject
random telegraph noise
en
dc.subject
nanoscopic current paths
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Imaging of Bandtail States in Silicon Heterojunction Solar Cells
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
86225
dc.title.subtitle
Nanoscopic Current Effects on Photovoltaics
dcterms.bibliographicCitation.doi
10.1021/acsanm.0c02704
dcterms.bibliographicCitation.journaltitle
ACS Applied Nano Materials
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.originalpublishername
ACS Publications
dcterms.bibliographicCitation.originalpublisherplace
Washington, DC
dcterms.bibliographicCitation.pagestart
2404
dcterms.bibliographicCitation.pageend
2412
dcterms.bibliographicCitation.volume
4 (2021)
dcterms.bibliographicCitation.url
https://pubs.acs.org/doi/10.1021/acsanm.0c02704
dcterms.rightsHolder.url
https://pubs.acs.org/page/copyright/journals/posting_policies.html
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik
refubium.note.author
"This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in ACS Appl. Nano Mater., copyright © 2021 American Chemical Society after peer review. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acsanm.0c02704."
en
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2574-0970
dcterms.isPartOf.eissn
2574-0970