dc.contributor.author
Stefanowski, Jonathan
dc.contributor.author
Fiedler, Alexander F.
dc.contributor.author
Köhler, Markus
dc.contributor.author
Günther, Robert
dc.contributor.author
Liublin, Wjatscheslaw
dc.contributor.author
Tschaikner, Martin
dc.contributor.author
Rauch, Ariana
dc.contributor.author
Reismann, David
dc.contributor.author
Matthys, Romano
dc.contributor.author
Nützi, Reto
dc.contributor.author
Bixel, Maria Gabriele
dc.contributor.author
Adams, Ralf H.
dc.contributor.author
Niesner, Raluca A.
dc.contributor.author
Duda, Georg N.
dc.contributor.author
Hauser, Anja E.
dc.date.accessioned
2022-03-03T15:14:38Z
dc.date.available
2022-03-03T15:14:38Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34321
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34038
dc.description.abstract
Bone healing involves the interplay of immune cells, mesenchymal cells, and vasculature over the time course of regeneration. Approaches to quantify the spatiotemporal aspects of bone healing at cellular resolution during long bone healing do not yet exist. Here, a novel technique termed Limbostomy is presented, which combines intravital microendoscopy with an osteotomy. This design allows a modular combination of an internal fixator plate with a gradient refractive index (GRIN) lens at various depths in the bone marrow and can be combined with a surgical osteotomy procedure. The field of view (FOV) covers a significant area of the fracture gap and allows monitoring cellular processes in vivo. The GRIN lens causes intrinsic optical aberrations which have to be corrected. The optical system was characterized and a postprocessing algorithm was developed. It corrects for wave front aberration-induced image plane deformation and for background and noise signals, enabling us to observe subcellular processes. Exemplarily, we quantitatively and qualitatively analyze angiogenesis in bone regeneration. We make use of a transgenic reporter mouse strain with nucleargreen fluorescent protein and membrane-bound tdTomato under the Cadherin-5 promoter. We observe two phases of vascularization. First, rapid vessel sprouting pervades the FOV within 3-4 days after osteotomy. Second, the vessel network continues to be dynamically remodeled until the end of our observation time, 14 days after surgery. Limbostomy opens a unique set of opportunities and allows further insight on spatiotemporal aspects of bone marrow biology, for example, hematopoiesis, analysis of cellular niches, immunological memory, and vascularization in the bone marrow during health and disease.
en
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
intravital microscopy
en
dc.subject
bone regeneration
en
dc.subject
bone vascularization
en
dc.subject
internal fixation
en
dc.subject
chronic window
en
dc.subject
multiphoton microscopy
en
dc.subject
wave front correction
en
dc.subject
aberration correction
en
dc.subject
bone microendoscopy
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Limbostomy: Longitudinal Intravital Microendoscopy in Murine Osteotomies
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1002/cyto.a.23997
dcterms.bibliographicCitation.journaltitle
Cytometry Part A
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.originalpublishername
Wiley
dcterms.bibliographicCitation.pagestart
483
dcterms.bibliographicCitation.pageend
495
dcterms.bibliographicCitation.volume
97
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
DEAL Wiley
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
32196971
dcterms.isPartOf.issn
1552-4922
dcterms.isPartOf.eissn
1552-4930