dc.contributor.author
Mura, Joaquin
dc.contributor.author
Schrank, Felix
dc.contributor.author
Sack, Ingolf
dc.date.accessioned
2022-03-03T08:27:31Z
dc.date.available
2022-03-03T08:27:31Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34296
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34013
dc.description.abstract
Purpose: Magnetic resonance elastography (MRE) measures stiffness of soft tissues by analyzing their spatial harmonic response to externally induced shear vibrations. Many MRE methods use inversion-based reconstruction approaches, which invoke first- or second-order derivatives by finite difference operators (first- and second-FDOs) and thus give rise to a biased frequency dispersion of stiffness estimates.
Methods: We here demonstrate analytically, numerically, and experimentally that FDO-based stiffness estimates are affected by (1) noise-related underestimation of values in the range of high spatial wave support, that is, at lower vibration frequencies, and (2) overestimation of values due to wave discretization at low spatial support, that is, at higher vibration frequencies.
Results: Our results further demonstrate that second-FDOs are more susceptible to noise than first-FDOs and that FDO dispersion depends both on signal-to-noise ratio (SNR) and on a lumped parameter A, which is defined as wavelength over pixel size and over a number of pixels per stencil of the FDO. Analytical FDO dispersion functions are derived for optimizing A parameters at a given SNR. As a simple rule of thumb, we show that FDO artifacts are minimized when A/2 is in the range of the square root of 2SNR for the first-FDO or cubic root of 5SNR for the second-FDO.
Conclusions: Taken together, the results of our study provide an analytical solution to a long-standing, well-recognized, yet unsolved problem in MRE postprocessing and might thus contribute to the ongoing quest for minimizing inversion artifacts in MRE.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
direct inversion
en
dc.subject
finite difference operators
en
dc.subject
Helmholtz equation
en
dc.subject
multifrequency magnetic resonance elastography
en
dc.subject
shear wave speed dispersion
en
dc.subject
wave phase gradient
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
An analytical solution to the dispersion‐by‐inversion problem in magnetic resonance elastography
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1002/mrm.28247
dcterms.bibliographicCitation.journaltitle
Magnetic Resonance in Medicine
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
Wiley
dcterms.bibliographicCitation.pagestart
61
dcterms.bibliographicCitation.pageend
71
dcterms.bibliographicCitation.volume
84
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
DEAL Wiley
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
32141650
dcterms.isPartOf.issn
0740-3194
dcterms.isPartOf.eissn
1522-2594