dc.contributor.author
Murillo-Sánchez, Marta L.
dc.contributor.author
Reitsma, Geert
dc.contributor.author
Poullain, Sonia Marggi
dc.contributor.author
Fernández-Milán, Pedro
dc.contributor.author
González-Vázquez, Jesús
dc.contributor.author
de Nalda, Rebeca
dc.contributor.author
Martín, Fernando
dc.contributor.author
Vrakking, Marc J. J.
dc.contributor.author
Kornilov, Oleg
dc.contributor.author
Bañares, Luis
dc.date.accessioned
2022-04-29T09:40:08Z
dc.date.available
2022-04-29T09:40:08Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34278
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33996
dc.description.abstract
The time-resolved photodynamics of the methyl iodide cation (CH3I+) are investigated by means of femtosecond XUV–IR pump–probe spectroscopy. A time-delay-compensated XUV monochromator is employed to isolate a specific harmonic, the 9th harmonic of the fundamental 800 nm (13.95 eV, 88.89 nm), which is used as a pump pulse to prepare the cation in several electronic states. A time-delayed IR probe pulse is used to probe the dissociative dynamics on the first excited $\tilde {A}\enspace {}^{2}\mathrm{A}_{1}$ state potential energy surface. Photoelectrons and photofragment ions—${\mathrm{C}\mathrm{H}}_{3}^{+}$ and I+—are detected by velocity map imaging. The experimental results are complemented with high level ab initio calculations for the potential energy curves of the electronic states of CH3I+ as well as with full dimension on-the-fly trajectory calculations on the first electronically excited state $\tilde {A}\enspace {}^{2}\mathrm{A}_{1}$, considering the presence of the IR pulse. The ${\mathrm{C}\mathrm{H}}_{3}^{+}$ and I+ pump–probe transients reflect the role of the IR pulse in controlling the photodynamics of CH3I+ in the $\tilde {A}\enspace {}^{2}\mathrm{A}_{1}$ state, mainly through the coupling to the ground state $\tilde {X}\enspace {}^{2}\mathrm{E}_{3/2,1/2}$ and to the excited $\tilde {B}\enspace {}^{2}\mathrm{E}$ state manifold. Oscillatory features are observed and attributed to a vibrational wave packet prepared in the $\tilde {A}\enspace {}^{2}\mathrm{A}_{1}$ state. The IR probe pulse induces a coupling between electronic states leading to a slow depletion of ${\mathrm{C}\mathrm{H}}_{3}^{+}$ fragments after the cation is transferred to the ground $\tilde {X}\enspace {}^{2}\mathrm{E}_{3/2,1/2}$ states and an enhancement of I+ fragments by absorption of IR photons yielding dissociative photoionization.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
high harmonic generation
en
dc.subject
XUV photoionization
en
dc.subject
femtosecond dynamics
en
dc.subject
time delay compensated monochromator
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Femtosecond XUV–IR induced photodynamics in the methyl iodide cation
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
86358
dcterms.bibliographicCitation.articlenumber
073023
dcterms.bibliographicCitation.doi
10.1088/1367-2630/ac0c9b
dcterms.bibliographicCitation.journaltitle
New Journal of Physics
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.originalpublishername
IOP Publishing
dcterms.bibliographicCitation.originalpublisherplace
Bristol
dcterms.bibliographicCitation.volume
23 (2021)
dcterms.bibliographicCitation.url
https://iopscience.iop.org/article/10.1088/1367-2630/ac0c9b
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1367-2630