dc.contributor.author
Lin, Xingcheng
dc.contributor.author
George, Jason T.
dc.contributor.author
Schafer, Nicholas P.
dc.contributor.author
Ng Chau, Kevin
dc.contributor.author
Birnbaum, Michael E.
dc.contributor.author
Clementi, Cecilia
dc.contributor.author
Onuchic, José N.
dc.contributor.author
Levine, Herbert
dc.date.accessioned
2022-04-29T08:29:37Z
dc.date.available
2022-04-29T08:29:37Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34271
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33989
dc.description.abstract
Accurate assessment of T-cell-receptor (TCR)–antigen specificity across the whole immune repertoire lies at the heart of improved cancer immunotherapy, but predictive models capable of high-throughput assessment of TCR–peptide pairs are lacking. Recent advances in deep sequencing and crystallography have enriched the data available for studying TCR–peptide systems. Here, we introduce RACER, a pairwise energy model capable of rapid assessment of TCR–peptide affinity for entire immune repertoires. RACER applies supervised machine learning to efficiently and accurately resolve strong TCR–peptide binding pairs from weak ones. The trained parameters further enable a physical interpretation of interacting patterns encoded in each TCR–peptide system. When applied to simulate thymic selection of a major-histocompatibility-complex (MHC)-restricted T-cell repertoire, RACER accurately estimates recognition rates for tumor-associated neoantigens and foreign peptides, thus demonstrating its utility in helping address the computational challenge of reliably identifying properties of tumor antigen-specific T-cells at the level of an individual patient’s immune repertoire.
en
dc.format.extent
36 Seiten (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Computational biophysics
en
dc.subject
Machine learning
en
dc.subject
T-cell receptor
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Rapid assessment of T-cell receptor specificity of the immune repertoire
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
85817
dcterms.bibliographicCitation.doi
10.1038/s43588-021-00076-1
dcterms.bibliographicCitation.journaltitle
Nature Computational Science
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.originalpublishername
Nature Research
dcterms.bibliographicCitation.originalpublisherplace
London
dcterms.bibliographicCitation.pagestart
362
dcterms.bibliographicCitation.pageend
373
dcterms.bibliographicCitation.volume
1 (2021)
dcterms.bibliographicCitation.url
http://www.nature.com/articles/s43588-021-00076-1
dcterms.rightsHolder.url
https://www.nature.com/natcomputsci/editorial-policies/self-archiving-and-license-to-publish#self-archiving-policy
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2662-8457