dc.contributor.author
Schmoll, Philipp
dc.contributor.author
Kshetrimayum, Augustine
dc.contributor.author
Eisert, Jens
dc.contributor.author
Orús, Román
dc.contributor.author
Rizzi, Matteo
dc.date.accessioned
2022-03-01T11:31:34Z
dc.date.available
2022-03-01T11:31:34Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34256
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33974
dc.description.abstract
The classical Heisenberg model in two spatial dimensions constitutes one of the most paradigmatic spin models, taking an important role in statistical and condensed matter physics to understand magnetism. Still, despite its paradigmatic character and the widely accepted ban of a (continuous) spontaneous symmetry breaking, controversies remain whether the model exhibits a phase transition at finite temperature. Importantly, the model can be interpreted as a lattice discretization of the O(3) non-linear sigma model in 1+1 dimensions, one of the simplest quantum field theories encompassing crucial features of celebrated higher-dimensional ones (like quantum chromodynamics in 3+1 dimensions), namely the phenomenon of asymptotic freedom. This should also exclude finite-temperature transitions, but lattice effects might play a significant role in correcting the mainstream picture. In this work, we make use of state-of-the-art tensor network approaches, representing the classical partition function in the thermodynamic limit over a large range of temperatures, to comprehensively explore the correlation structure for Gibbs states. By implementing an SU(2) symmetry in our two-dimensional tensor network contraction scheme, we are able to handle very large effective bond dimensions of the environment up to χeffE∼1500, a feature that is crucial in detecting phase transitions. With decreasing temperatures, we find a rapidly diverging correlation length, whose behaviour is apparently compatible with the two main contradictory hypotheses known in the literature, namely a finite-T transition and asymptotic freedom, though with a slight preference for the second.
en
dc.format.extent
35 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
classical Heisenberg model
en
dc.subject
statistical and condensed matter physics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
The classical two-dimensional Heisenberg model revisited: An SU(2)-symmetric tensor network study
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
098
dcterms.bibliographicCitation.doi
10.21468/SciPostPhys.11.5.098
dcterms.bibliographicCitation.journaltitle
SciPost Physics
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.volume
11
dcterms.bibliographicCitation.url
https://doi.org/10.21468/SciPostPhys.11.5.098
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2542-4653
refubium.resourceType.provider
WoS-Alert