dc.contributor.author
Akay, Ömer
dc.contributor.author
Poon, Jeffrey
dc.contributor.author
Robertson, Craig
dc.contributor.author
Abdi, Fatwa Firdaus
dc.contributor.author
Cuenya, Beatriz Roldan
dc.contributor.author
Giersig, Michael
dc.contributor.author
Brinkert, Katharina
dc.date.accessioned
2022-03-31T14:28:33Z
dc.date.available
2022-03-31T14:28:33Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34252
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33970
dc.description.abstract
Photoelectrochemical devices integrate the processes of light absorption, charge separation, and catalysis for chemical synthesis. The monolithic design is interesting for space applications, where weight and volume constraints predominate. Hindered gas bubble desorption and the lack of macroconvection processes in reduced gravitation, however, limit its application in space. Physico-chemical modifications of the electrode surface are required to induce gas bubble desorption and ensure continuous device operation. A detailed investigation of the electrocatalyst nanostructure design for light-assisted hydrogen production in microgravity environment is described. p-InP coated with a rhodium (Rh) electrocatalyst layer fabricated by shadow nanosphere lithography is used as a model device. Rh is deposited via physical vapor deposition (PVD) or photoelectrodeposition through a mask of polystyrene (PS) particles. It is observed that the PS sphere size and electrocatalyst deposition technique alter the electrode surface wettability significantly, controlling hydrogen gas bubble detachment and photocurrent–voltage characteristics. The highest, most stable current density of 37.8 mA cm−2 is achieved by depositing Rh via PVD through 784 nm sized PS particles. The increased hydrophilicity of the photoelectrode results in small gas bubble contact angles and weak frictional forces at the solid–gas interface which cause enhanced gas bubble detachment and enhanced device efficiency.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
electrocatalyst nanotopography
en
dc.subject
hydrogen evolution
en
dc.subject
microgravity
en
dc.subject
photoelectrocatalysis
en
dc.subject
(photo-)electrochemical gas bubble evolution
en
dc.subject
shadow nanosphere lithography
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Releasing the Bubbles: Nanotopographical Electrocatalyst Design for Efficient Photoelectrochemical Hydrogen Production in Microgravity Environment
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2105380
dcterms.bibliographicCitation.doi
10.1002/advs.202105380
dcterms.bibliographicCitation.journaltitle
Advanced Science
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.volume
9
dcterms.bibliographicCitation.url
https://doi.org/10.1002/advs.202105380
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2198-3844
refubium.resourceType.provider
WoS-Alert