dc.contributor.author
Haferkamp, Jonas
dc.contributor.author
Hunter-Jones, Nicholas
dc.date.accessioned
2022-08-17T11:38:12Z
dc.date.available
2022-08-17T11:38:12Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34149
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33867
dc.description.abstract
Random quantum circuits are a central concept in quantum information theory with applications ranging from demonstrations of quantum computational advantage to descriptions of scrambling in strongly interacting systems and black holes. The utility of random quantum circuits in these settings stems from their ability to rapidly generate quantum pseudorandomness. In a seminal paper by Brandão, Harrow, and Horodecki [Commun. Math. Phys. 346, 397 (2016)] it was proven that the tth moment operator of local random quantum circuits on n qudits with local dimension q has a spectral gap of at least Ω(n−1t−5−3.1/ln(q)), which implies that they are efficient constructions of approximate unitary designs. As a first result, we use Knabe bounds for the spectral gaps of frustration-free Hamiltonians to show that one-dimensional random quantum circuits have a spectral gap scaling as Ω(n−1), provided that t is small compared to the local dimension: t2≤O(q). This implies a (nearly) linear scaling of the circuit depth in the design order t. Our second result is an unconditional spectral gap bounded below by Ω[n−1ln−1(n)t−α(q)] for random quantum circuits with all-to-all interactions. This improves both the n and t scaling in design depth for the nonlocal model. We show this by proving a recursion relation for the spectral gaps involving an auxiliary random walk. Lastly, we solve the smallest nontrivial case exactly and combine with numerics and Knabe bounds to improve the constants involved in the spectral gap for small values of t.
en
dc.format.extent
27 Seiten (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Quantum correlations in quantum information
en
dc.subject
Quantum entanglement
en
dc.subject
Quantum Information
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Improved spectral gaps for random quantum circuits: Large local dimensions and all-to-all interactions
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
85954
dcterms.bibliographicCitation.articlenumber
022417
dcterms.bibliographicCitation.doi
10.1103/PhysRevA.104.022417
dcterms.bibliographicCitation.journaltitle
Physical Review A
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.originalpublishername
American Physical Society
dcterms.bibliographicCitation.originalpublisherplace
College Park, MD
dcterms.bibliographicCitation.volume
104 (2021)
dcterms.bibliographicCitation.url
https://link.aps.org/doi/10.1103/PhysRevA.104.022417
dcterms.rightsHolder.url
https://journals.aps.org/copyrightFAQ.html#free
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2469-9926
dcterms.isPartOf.eissn
2469-9934