dc.contributor.author
Nie, Chuanxiong
dc.contributor.author
Pouyan, Paria
dc.contributor.author
Lauster, Daniel
dc.contributor.author
Trimpert, Jakob
dc.contributor.author
Kerkhoff, Yannic
dc.contributor.author
Szekeres, Gergo Peter
dc.contributor.author
Wallert, Matthias
dc.contributor.author
Block, Stephan
dc.contributor.author
Sahoo, Anil Kumar
dc.contributor.author
Dernedde, Jens
dc.contributor.author
Pagel, Kevin
dc.contributor.author
Kaufer, Benedikt
dc.contributor.author
Netz, Roland R.
dc.contributor.author
Ballauff, Matthias
dc.contributor.author
Haag, Rainer
dc.date.accessioned
2022-02-25T12:55:25Z
dc.date.available
2022-02-25T12:55:25Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34121
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33839
dc.description.abstract
Here we report that negatively charged polysulfates can bind to the spike protein of SARS-CoV-2 via electrostatic interactions. Using a plaque reduction assay, we compare inhibition of SARS-CoV-2 by heparin, pentosan sulfate, linear polyglycerol sulfate (LPGS) and hyperbranched polyglycerol sulfate (HPGS). Highly sulfated LPGS is the optimal inhibitor, with a half-maximal inhibitory concentration (IC50) of 67 μg/mL (approx. 1.6 μM). This synthetic polysulfates exhibit more than 60-fold higher virus inhibitory activity than heparin (IC50: 4084 μg/mL), along with much lower anticoagulant activity. Furthermore, in molecular dynamics simulations, we verified that LPGS can bind stronger to the spike protein than heparin, and that LPGS can interact even more with the spike protein of the new N501Y and E484K variants. Our study demonstrates that the entry of SARS-CoV-2 into host cells can be blocked via electrostatic interaction, therefore LPGS can serve as a blueprint for the design of novel viral inhibitors of SARS-CoV-2.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
polysulfates
en
dc.subject
SARS-CoV-2 inhibition
en
dc.subject
virus binding
en
dc.subject
electrostatic interactions
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Polysulfates block SARS‐CoV‐2 uptake through electrostatic interactions
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
82864
dcterms.bibliographicCitation.doi
10.1002/anie.202102717
dcterms.bibliographicCitation.journaltitle
Angewandte Chemie / International edition
dcterms.bibliographicCitation.number
29
dcterms.bibliographicCitation.originalpublishername
Wiley-VCH
dcterms.bibliographicCitation.originalpublisherplace
Weinheim
dcterms.bibliographicCitation.pagestart
15870
dcterms.bibliographicCitation.pageend
15878
dcterms.bibliographicCitation.volume
60
dcterms.bibliographicCitation.url
https://onlinelibrary.wiley.com/doi/10.1002/anie.202102717
refubium.affiliation
Physik
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation
Veterinärmedizin
refubium.affiliation.other
Institut für Theoretische Physik
refubium.affiliation.other
Institut für Chemie und Biochemie / Organische Chemie
refubium.affiliation.other
Institut für Chemie und Biochemie / Physikalische und Theoretische Chemie
refubium.affiliation.other
Institut für Virologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1433-7851